# Copyright (c) OpenMMLab. All rights reserved. import argparse from os import path as osp import mmcv from mmcv import Config, DictAction, mkdir_or_exist from mmdet3d.datasets import build_dataset from mmdet3d.registry import VISUALIZERS from mmdet3d.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--skip-type', type=str, nargs='+', default=['Normalize'], help='skip some useless pipeline') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument( '--task', type=str, choices=['det', 'seg', 'multi_modality-det', 'mono-det'], help='Determine the visualization method depending on the task.') parser.add_argument( '--aug', action='store_true', help='Whether to visualize augmented datasets or original dataset.') parser.add_argument( '--online', action='store_true', help='Whether to perform online visualization. Note that you often ' 'need a monitor to do so.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def build_data_cfg(config_path, skip_type, aug, cfg_options): """Build data config for loading visualization data.""" cfg = Config.fromfile(config_path) if cfg_options is not None: cfg.merge_from_dict(cfg_options) # extract inner dataset of `RepeatDataset` as `cfg.data.train` # so we don't need to worry about it later if cfg.data.train['type'] == 'RepeatDataset': cfg.data.train = cfg.data.train.dataset # use only first dataset for `ConcatDataset` if cfg.data.train['type'] == 'ConcatDataset': cfg.data.train = cfg.data.train.datasets[0] train_data_cfg = cfg.data.train if aug: show_pipeline = cfg.train_pipeline else: show_pipeline = cfg.eval_pipeline for i in range(len(cfg.train_pipeline)): if cfg.train_pipeline[i]['type'] == 'LoadAnnotations3D': show_pipeline.insert(i, cfg.train_pipeline[i]) # Collect points as well as labels if cfg.train_pipeline[i]['type'] == 'Pack3DInputs': if show_pipeline[-1]['type'] == 'Pack3DInputs': show_pipeline[-1] = cfg.train_pipeline[i] else: show_pipeline.append(cfg.train_pipeline[i]) train_data_cfg['pipeline'] = [ x for x in show_pipeline if x['type'] not in skip_type ] return cfg def main(): args = parse_args() if args.output_dir is not None: mkdir_or_exist(args.output_dir) cfg = build_data_cfg(args.config, args.skip_type, args.aug, args.cfg_options) # register all modules in mmdet3d into the registries register_all_modules() try: dataset = build_dataset( cfg.train_dataloader.dataset, default_args=dict(filter_empty_gt=False)) except TypeError: # seg dataset doesn't have `filter_empty_gt` key dataset = build_dataset(cfg.train_dataloader.dataset) # configure visualization mode vis_task = args.task # 'det', 'seg', 'multi_modality-det', 'mono-det' visualizer = VISUALIZERS.build(cfg.visualizer) visualizer.dataset_meta = dataset.metainfo progress_bar = mmcv.ProgressBar(len(dataset)) for item in dataset: # the 3D Boxes in input could be in any of three coordinates data_input = item['inputs'] data_sample = item['data_sample'].numpy() out_file = osp.join( args.output_dir) if args.output_dir is not None else None visualizer.add_datasample( '3d visualzier', data_input, data_sample, show=not args.not_show, wait_time=args.show_interval, out_file=out_file, vis_task=vis_task) progress_bar.update() if __name__ == '__main__': main()