# PETR This is an README for `PETR`. ## Description Author: @SekiroRong. This is an implementation of *PETR*. ## Usage ### Training commands In MMDet3D's root directory, run the following command to train the model: ```bash python tools/train.py projects/PETR/config/petr/petr_vovnet_gridmask_p4_800x320.py ``` ### Testing commands In MMDet3D's root directory, run the following command to test the model: ```bash python tools/test.py projects/PETR/config/petr/petr_vovnet_gridmask_p4_800x320.py ${CHECKPOINT_PATH} ``` ## Results This Result is trained by petr_vovnet_gridmask_p4_800x320.py and use [weights](https://drive.google.com/file/d/1ABI5BoQCkCkP4B0pO5KBJ3Ni0tei0gZi/view?usp=sharing) as pretrain weight. | Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download | | :---------------------------------------------------------------------------: | :-----: | :------: | :------------: | :--: | :--: | :----------------------: | | [petr_vovnet_gridmask_p4_800x320](configs/petr_vovnet_gridmask_p4_800x320.py) | 1x | 7.62 | 18.7 | 38.3 | 43.5 | [model](<>) \| [log](<>) | ``` mAP: 0.3830 mATE: 0.7547 mASE: 0.2683 mAOE: 0.4948 mAVE: 0.8331 mAAE: 0.2056 NDS: 0.4358 Eval time: 118.7s Per-class results: Object Class AP ATE ASE AOE AVE AAE car 0.567 0.538 0.151 0.086 0.873 0.212 truck 0.341 0.785 0.213 0.113 0.821 0.234 bus 0.426 0.766 0.201 0.128 1.813 0.343 trailer 0.216 1.116 0.227 0.649 0.640 0.122 construction_vehicle 0.093 1.118 0.483 1.292 0.217 0.330 pedestrian 0.453 0.685 0.293 0.644 0.535 0.238 motorcycle 0.374 0.700 0.253 0.624 1.291 0.154 bicycle 0.345 0.622 0.262 0.775 0.475 0.011 traffic_cone 0.539 0.557 0.319 nan nan nan barrier 0.476 0.661 0.279 0.142 nan nan ```