Unverified Commit f885d28a authored by VVsssssk's avatar VVsssssk Committed by GitHub
Browse files

[Refactor] Update configs name (#1757)

* fix cfg name

* update cfg name

* fix cfg

* fix comments

* fix comment

* fix comments
parent ea22f8ec
_base_ = [
'../_base_/datasets/kitti-3d-3class.py',
'../_base_/schedules/cyclic_40e.py', '../_base_/default_runtime.py'
'../_base_/schedules/cyclic-40e.py', '../_base_/default_runtime.py'
]
voxel_size = [0.05, 0.05, 0.1]
......
......@@ -22,19 +22,19 @@ We implement SECOND and provide the results and checkpoints on KITTI dataset.
| Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :-----------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-car.py) | Car | cyclic 80e | 5.4 | | 79.07 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238.log.json) |
| [SECFPN](./second_hv_secfpn_8xb6-80e_kitti-3d-car.py) | Car | cyclic 80e | 5.4 | | 79.07 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238.log.json) |
| [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py) | Car | cyclic 80e | 2.9 | | 78.72 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301-1f5ad833.pth)\| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301.log.json) |
| [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 5.4 | | 65.74 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017-ae782e87.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017log.json) |
| [SECFPN](./second_hv_secfpn_8xb6-80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 5.4 | | 65.74 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017-ae782e87.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017log.json) |
| [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 2.9 | | 67.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059-05f67bdf.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059.log.json) |
### Waymo
| Backbone | Load Interval | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP@L1 | mAPH@L1 | mAP@L2 | **mAPH@L2** | Download |
| :-----------------------------------------------------------: | :-----------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :----: | :---------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./hv_second_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py) | 5 | 3 Class | 2x | 8.12 | | 65.3 | 61.7 | 58.9 | 55.7 | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class_20201115_112448.log.json) |
| above @ Car | | | 2x | 8.12 | | 67.1 | 66.6 | 58.7 | 58.2 | |
| above @ Pedestrian | | | 2x | 8.12 | | 68.1 | 59.1 | 59.5 | 51.5 | |
| above @ Cyclist | | | 2x | 8.12 | | 60.7 | 59.5 | 58.4 | 57.3 | |
| Backbone | Load Interval | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP@L1 | mAPH@L1 | mAP@L2 | **mAPH@L2** | Download |
| :----------------------------------------------------------------: | :-----------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :----: | :---------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./second_hv_secfpn_sbn-all_16xb2-2x_waymoD5-3d-3class.py) | 5 | 3 Class | 2x | 8.12 | | 65.3 | 61.7 | 58.9 | 55.7 | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class_20201115_112448.log.json) |
| above @ Car | | | 2x | 8.12 | | 67.1 | 66.6 | 58.7 | 58.2 | |
| above @ Pedestrian | | | 2x | 8.12 | | 68.1 | 59.1 | 59.5 | 51.5 | |
| above @ Cyclist | | | 2x | 8.12 | | 60.7 | 59.5 | 58.4 | 57.3 | |
Note:
......
_base_ = './hv_second_secfpn_6x8_80e_kitti-3d-3class.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = './hv_second_secfpn_6x8_80e_kitti-3d-car.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = [
'../_base_/models/hv_second_secfpn_kitti.py',
'../_base_/models/second_hv_secfpn_kitti.py',
'../_base_/datasets/kitti-3d-3class.py',
'../_base_/schedules/cyclic_40e.py', '../_base_/default_runtime.py'
'../_base_/schedules/cyclic-40e.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/hv_second_secfpn_kitti.py',
'../_base_/datasets/kitti-3d-car.py', '../_base_/schedules/cyclic_40e.py',
'../_base_/models/second_hv_secfpn_kitti.py',
'../_base_/datasets/kitti-3d-car.py', '../_base_/schedules/cyclic-40e.py',
'../_base_/default_runtime.py'
]
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
......
_base_ = [
'../_base_/models/hv_second_secfpn_waymo.py',
'../_base_/models/second_hv_secfpn_waymo.py',
'../_base_/datasets/waymoD5-3d-3class.py',
'../_base_/schedules/schedule_2x.py',
'../_base_/schedules/schedule-2x.py',
'../_base_/default_runtime.py',
]
......
......@@ -20,9 +20,9 @@ We implement SMOKE and provide the results and checkpoints on KITTI dataset.
### KITTI
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [DLA34](./smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d.py) | 6x | 9.64 | | 13.85 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553-d46d9bb0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553.log.json) |
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :-----------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [DLA34](./smoke_dla34_dlaneck_gn-all_4xb8-6x_kitti-mono3d.py) | 6x | 9.64 | | 13.85 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553-d46d9bb0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553.log.json) |
Note: mAP represents Car moderate 3D strict AP11 results.
......
......@@ -20,20 +20,20 @@ We implement PointPillars with Shape-aware grouping heads used in the SSN and pr
### NuScenes
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download |
| :--------------------------------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.4 | | 35.17 | 49.76 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json) |
| [SSN](./hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py) | 2x | 3.6 | | 40.91 | 54.44 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351-51915986.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351.log.json) |
| [RegNetX-400MF-SECFPN](../regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.4 | | 41.15 | 55.20 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334.log.json) |
| [RegNetX-400MF-SSN](./hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py) | 2x | 5.1 | | 46.65 | 58.24 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615-361e5e04.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615.log.json) |
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download |
| :---------------------------------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](../pointpillars/pointpillars_hv_secfpn_sbn-all_8xb4-2x_nus-3d.py) | 2x | 16.4 | | 35.17 | 49.76 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json) |
| [SSN](./ssn_hv_secfpn_sbn-all_16xb2-2x_nus-3d.py) | 2x | 3.6 | | 40.91 | 54.44 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351-51915986.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351.log.json) |
| [RegNetX-400MF-SECFPN](../regnet/pointpillars_hv_regnet-400mf_secfpn_sbn-all_8xb4-2x_nus-3d.py) | 2x | 16.4 | | 41.15 | 55.20 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334.log.json) |
| [RegNetX-400MF-SSN](./ssn_hv_regnet-400mf_secfpn_sbn-all_16xb2-2x_nus-3d.py) | 2x | 5.1 | | 46.65 | 58.24 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615-361e5e04.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615.log.json) |
### Lyft
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | Private Score | Public Score | Download |
| :--------------------------------------------------------------------------: | :-----: | :------: | :------------: | :-----------: | :----------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py) | 2x | 12.2 | | 13.9 | 14.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807-2518e3de.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807.log.json) |
| [SSN](./hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py) | 2x | 8.5 | | 17.5 | 17.5 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731-46841b41.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731.log.json) |
| [RegNetX-400MF-SSN](./hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d.py) | 2x | 7.4 | | 17.9 | 18 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825-d93475a1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825.log.json) |
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | Private Score | Public Score | Download |
| :---------------------------------------------------------------------------: | :-----: | :------: | :------------: | :-----------: | :----------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](../pointpillars/pointpillars_hv_secfpn_sbn-all_8xb2-2x_lyft-3d.py) | 2x | 12.2 | | 13.9 | 14.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807-2518e3de.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807.log.json) |
| [SSN](./ssn_hv_secfpn_sbn-all_16xb2-2x_lyft-3d.py) | 2x | 8.5 | | 17.5 | 17.5 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731-46841b41.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731.log.json) |
| [RegNetX-400MF-SSN](./ssn_hv_regnet-400mf_secfpn_sbn-all_16xb1-2x_lyft-3d.py) | 2x | 7.4 | | 17.9 | 18 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825-d93475a1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825.log.json) |
Note:
......
......@@ -17,7 +17,7 @@ Collections:
Models:
- Name: hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d
In Collection: SSN
Config: configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py
Config: configs/ssn/ssn_hv_secfpn_sbn-all_16xb2-2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 3.6
......@@ -31,7 +31,7 @@ Models:
- Name: hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d
In Collection: SSN
Config: configs/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py
Config: configs/ssn/ssn_hv_regnet-400mf_secfpn_sbn-all_16xb2-2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 5.1
......@@ -45,7 +45,7 @@ Models:
- Name: hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d
In Collection: SSN
Config: configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py
Config: configs/ssn/ssn_hv_secfpn_sbn-all_16xb2-2x_lyft-3d.py
Metadata:
Training Data: Lyft
Training Memory (GB): 8.5
......
_base_ = './hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py'
_base_ = './ssn_hv_secfpn_sbn-all_16xb2-2x_lyft-3d.py'
# model settings
model = dict(
type='MVXFasterRCNN',
......
_base_ = './hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py'
_base_ = './ssn_hv_secfpn_sbn-all_16xb2-2x_nus-3d.py'
# model settings
model = dict(
type='MVXFasterRCNN',
......
_base_ = [
'../_base_/models/hv_pointpillars_fpn_lyft.py',
'../_base_/models/pointpillars_hv_fpn_lyft.py',
'../_base_/datasets/lyft-3d.py',
'../_base_/schedules/schedule_2x.py',
'../_base_/schedules/schedule-2x.py',
'../_base_/default_runtime.py',
]
point_cloud_range = [-100, -100, -5, 100, 100, 3]
......
_base_ = [
'../_base_/models/hv_pointpillars_fpn_nus.py',
'../_base_/models/pointpillars_hv_fpn_nus.py',
'../_base_/datasets/nus-3d.py',
'../_base_/schedules/schedule_2x.py',
'../_base_/schedules/schedule-2x.py',
'../_base_/default_runtime.py',
]
# Note that the order of class names should be consistent with
......
......@@ -20,15 +20,15 @@ We implement VoteNet and provide the result and checkpoints on ScanNet and SUNRG
### ScanNet
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download |
| :-----------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [PointNet++](./votenet_8x8_scannet-3d-18class.py) | 3x | 4.1 | | 62.34 | 40.82 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503.log.json) |
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download |
| :----------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [PointNet++](./votenet_8xb8_scannet-3d.py) | 3x | 4.1 | | 62.34 | 40.82 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503.log.json) |
### SUNRGBD
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download |
| :------------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [PointNet++](./votenet_16x8_sunrgbd-3d-10class.py) | 3x | 8.1 | | 59.78 | 35.77 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823.log.json) |
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download |
| :-----------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [PointNet++](./votenet_8xb16_sunrgbd-3d.py) | 3x | 8.1 | | 59.78 | 35.77 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823.log.json) |
**Notice**: If your current mmdetection3d version >= 0.6.0, and you are using the checkpoints downloaded from the above links or using checkpoints trained with mmdetection3d version \< 0.6.0, the checkpoints have to be first converted via [tools/model_converters/convert_votenet_checkpoints.py](../../tools/model_converters/convert_votenet_checkpoints.py):
......@@ -50,9 +50,9 @@ Adding IoU loss (simply = 1-IoU) boosts VoteNet's performance. To use IoU loss,
iou_loss=dict(type='AxisAlignedIoULoss', reduction='sum', loss_weight=10.0 / 3.0)
```
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download |
| :-------------------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :------: |
| [PointNet++](./votenet_iouloss_8x8_scannet-3d-18class.py) | 3x | 4.1 | | 63.81 | 44.21 | / |
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download |
| :-----------------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :------: |
| [PointNet++](./votenet_head-iouloss_8xb8_scannet-3d.py) | 3x | 4.1 | | 63.81 | 44.21 | / |
For now, we only support calculating IoU loss for axis-aligned bounding boxes since the CUDA op of general 3D IoU calculation does not implement the backward method. Therefore, IoU loss can only be used for ScanNet dataset for now.
......
......@@ -15,9 +15,9 @@ Collections:
Version: v0.5.0
Models:
- Name: votenet_16x8_sunrgbd-3d-10class.py
- Name: votenet_8xb16_sunrgbd-3d.py
In Collection: VoteNet
Config: configs/votenet/votenet_16x8_sunrgbd-3d-10class.py
Config: configs/votenet/votenet_8xb16_sunrgbd-3d.py
Metadata:
Training Data: SUNRGBD
Training Memory (GB): 8.1
......@@ -29,9 +29,9 @@ Models:
AP@0.5: 35.77
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth
- Name: votenet_8x8_scannet-3d-18class.py
- Name: votenet_8xb8_scannet-3d.py
In Collection: VoteNet
Config: configs/votenet/votenet_8x8_scannet-3d-18class.py
Config: configs/votenet/votenet_8xb8_scannet-3d.py
Metadata:
Training Data: ScanNet
Training Memory (GB): 4.1
......@@ -45,7 +45,7 @@ Models:
- Name: votenet_iouloss_8x8_scannet-3d-18class
In Collection: VoteNet
Config: configs/votenet/votenet_iouloss_8x8_scannet-3d-18class.py
Config: configs/votenet/votenet_head-iouloss_8xb8_scannet-3d.py
Metadata:
Training Data: ScanNet
Training Memory (GB): 4.1
......
# TODO refactor the config of sunrgbd
_base_ = [
'../_base_/datasets/sunrgbd-3d-10class.py', '../_base_/models/votenet.py',
'../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py'
'../_base_/datasets/sunrgbd-3d.py', '../_base_/models/votenet.py',
'../_base_/schedules/schedule-3x.py', '../_base_/default_runtime.py'
]
# model settings
model = dict(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment