Unverified Commit f885d28a authored by VVsssssk's avatar VVsssssk Committed by GitHub
Browse files

[Refactor] Update configs name (#1757)

* fix cfg name

* update cfg name

* fix cfg

* fix comments

* fix comment

* fix comments
parent ea22f8ec
_base_ = [ _base_ = [
'../_base_/datasets/kitti-3d-3class.py', '../_base_/datasets/kitti-3d-3class.py',
'../_base_/schedules/cyclic_40e.py', '../_base_/default_runtime.py' '../_base_/schedules/cyclic-40e.py', '../_base_/default_runtime.py'
] ]
voxel_size = [0.05, 0.05, 0.1] voxel_size = [0.05, 0.05, 0.1]
......
...@@ -22,19 +22,19 @@ We implement SECOND and provide the results and checkpoints on KITTI dataset. ...@@ -22,19 +22,19 @@ We implement SECOND and provide the results and checkpoints on KITTI dataset.
| Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | | Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :-----------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | :-----------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-car.py) | Car | cyclic 80e | 5.4 | | 79.07 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238.log.json) | | [SECFPN](./second_hv_secfpn_8xb6-80e_kitti-3d-car.py) | Car | cyclic 80e | 5.4 | | 79.07 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238.log.json) |
| [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py) | Car | cyclic 80e | 2.9 | | 78.72 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301-1f5ad833.pth)\| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301.log.json) | | [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py) | Car | cyclic 80e | 2.9 | | 78.72 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301-1f5ad833.pth)\| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301.log.json) |
| [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 5.4 | | 65.74 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017-ae782e87.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017log.json) | | [SECFPN](./second_hv_secfpn_8xb6-80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 5.4 | | 65.74 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017-ae782e87.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017log.json) |
| [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 2.9 | | 67.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059-05f67bdf.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059.log.json) | | [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 2.9 | | 67.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059-05f67bdf.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059.log.json) |
### Waymo ### Waymo
| Backbone | Load Interval | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP@L1 | mAPH@L1 | mAP@L2 | **mAPH@L2** | Download | | Backbone | Load Interval | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP@L1 | mAPH@L1 | mAP@L2 | **mAPH@L2** | Download |
| :-----------------------------------------------------------: | :-----------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :----: | :---------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | :----------------------------------------------------------------: | :-----------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :----: | :---------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./hv_second_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py) | 5 | 3 Class | 2x | 8.12 | | 65.3 | 61.7 | 58.9 | 55.7 | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class_20201115_112448.log.json) | | [SECFPN](./second_hv_secfpn_sbn-all_16xb2-2x_waymoD5-3d-3class.py) | 5 | 3 Class | 2x | 8.12 | | 65.3 | 61.7 | 58.9 | 55.7 | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class_20201115_112448.log.json) |
| above @ Car | | | 2x | 8.12 | | 67.1 | 66.6 | 58.7 | 58.2 | | | above @ Car | | | 2x | 8.12 | | 67.1 | 66.6 | 58.7 | 58.2 | |
| above @ Pedestrian | | | 2x | 8.12 | | 68.1 | 59.1 | 59.5 | 51.5 | | | above @ Pedestrian | | | 2x | 8.12 | | 68.1 | 59.1 | 59.5 | 51.5 | |
| above @ Cyclist | | | 2x | 8.12 | | 60.7 | 59.5 | 58.4 | 57.3 | | | above @ Cyclist | | | 2x | 8.12 | | 60.7 | 59.5 | 58.4 | 57.3 | |
Note: Note:
......
_base_ = './hv_second_secfpn_6x8_80e_kitti-3d-3class.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = './hv_second_secfpn_6x8_80e_kitti-3d-car.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = [ _base_ = [
'../_base_/models/hv_second_secfpn_kitti.py', '../_base_/models/second_hv_secfpn_kitti.py',
'../_base_/datasets/kitti-3d-3class.py', '../_base_/datasets/kitti-3d-3class.py',
'../_base_/schedules/cyclic_40e.py', '../_base_/default_runtime.py' '../_base_/schedules/cyclic-40e.py', '../_base_/default_runtime.py'
] ]
_base_ = [ _base_ = [
'../_base_/models/hv_second_secfpn_kitti.py', '../_base_/models/second_hv_secfpn_kitti.py',
'../_base_/datasets/kitti-3d-car.py', '../_base_/schedules/cyclic_40e.py', '../_base_/datasets/kitti-3d-car.py', '../_base_/schedules/cyclic-40e.py',
'../_base_/default_runtime.py' '../_base_/default_runtime.py'
] ]
point_cloud_range = [0, -40, -3, 70.4, 40, 1] point_cloud_range = [0, -40, -3, 70.4, 40, 1]
......
_base_ = [ _base_ = [
'../_base_/models/hv_second_secfpn_waymo.py', '../_base_/models/second_hv_secfpn_waymo.py',
'../_base_/datasets/waymoD5-3d-3class.py', '../_base_/datasets/waymoD5-3d-3class.py',
'../_base_/schedules/schedule_2x.py', '../_base_/schedules/schedule-2x.py',
'../_base_/default_runtime.py', '../_base_/default_runtime.py',
] ]
......
...@@ -20,9 +20,9 @@ We implement SMOKE and provide the results and checkpoints on KITTI dataset. ...@@ -20,9 +20,9 @@ We implement SMOKE and provide the results and checkpoints on KITTI dataset.
### KITTI ### KITTI
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | :-----------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [DLA34](./smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d.py) | 6x | 9.64 | | 13.85 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553-d46d9bb0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553.log.json) | | [DLA34](./smoke_dla34_dlaneck_gn-all_4xb8-6x_kitti-mono3d.py) | 6x | 9.64 | | 13.85 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553-d46d9bb0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553.log.json) |
Note: mAP represents Car moderate 3D strict AP11 results. Note: mAP represents Car moderate 3D strict AP11 results.
......
...@@ -20,20 +20,20 @@ We implement PointPillars with Shape-aware grouping heads used in the SSN and pr ...@@ -20,20 +20,20 @@ We implement PointPillars with Shape-aware grouping heads used in the SSN and pr
### NuScenes ### NuScenes
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download |
| :--------------------------------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | :---------------------------------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.4 | | 35.17 | 49.76 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json) | | [SECFPN](../pointpillars/pointpillars_hv_secfpn_sbn-all_8xb4-2x_nus-3d.py) | 2x | 16.4 | | 35.17 | 49.76 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json) |
| [SSN](./hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py) | 2x | 3.6 | | 40.91 | 54.44 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351-51915986.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351.log.json) | | [SSN](./ssn_hv_secfpn_sbn-all_16xb2-2x_nus-3d.py) | 2x | 3.6 | | 40.91 | 54.44 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351-51915986.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351.log.json) |
| [RegNetX-400MF-SECFPN](../regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.4 | | 41.15 | 55.20 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334.log.json) | | [RegNetX-400MF-SECFPN](../regnet/pointpillars_hv_regnet-400mf_secfpn_sbn-all_8xb4-2x_nus-3d.py) | 2x | 16.4 | | 41.15 | 55.20 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334.log.json) |
| [RegNetX-400MF-SSN](./hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py) | 2x | 5.1 | | 46.65 | 58.24 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615-361e5e04.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615.log.json) | | [RegNetX-400MF-SSN](./ssn_hv_regnet-400mf_secfpn_sbn-all_16xb2-2x_nus-3d.py) | 2x | 5.1 | | 46.65 | 58.24 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615-361e5e04.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615.log.json) |
### Lyft ### Lyft
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | Private Score | Public Score | Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | Private Score | Public Score | Download |
| :--------------------------------------------------------------------------: | :-----: | :------: | :------------: | :-----------: | :----------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | :---------------------------------------------------------------------------: | :-----: | :------: | :------------: | :-----------: | :----------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py) | 2x | 12.2 | | 13.9 | 14.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807-2518e3de.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807.log.json) | | [SECFPN](../pointpillars/pointpillars_hv_secfpn_sbn-all_8xb2-2x_lyft-3d.py) | 2x | 12.2 | | 13.9 | 14.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807-2518e3de.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807.log.json) |
| [SSN](./hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py) | 2x | 8.5 | | 17.5 | 17.5 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731-46841b41.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731.log.json) | | [SSN](./ssn_hv_secfpn_sbn-all_16xb2-2x_lyft-3d.py) | 2x | 8.5 | | 17.5 | 17.5 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731-46841b41.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731.log.json) |
| [RegNetX-400MF-SSN](./hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d.py) | 2x | 7.4 | | 17.9 | 18 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825-d93475a1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825.log.json) | | [RegNetX-400MF-SSN](./ssn_hv_regnet-400mf_secfpn_sbn-all_16xb1-2x_lyft-3d.py) | 2x | 7.4 | | 17.9 | 18 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825-d93475a1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825.log.json) |
Note: Note:
......
...@@ -17,7 +17,7 @@ Collections: ...@@ -17,7 +17,7 @@ Collections:
Models: Models:
- Name: hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d - Name: hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d
In Collection: SSN In Collection: SSN
Config: configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py Config: configs/ssn/ssn_hv_secfpn_sbn-all_16xb2-2x_nus-3d.py
Metadata: Metadata:
Training Data: nuScenes Training Data: nuScenes
Training Memory (GB): 3.6 Training Memory (GB): 3.6
...@@ -31,7 +31,7 @@ Models: ...@@ -31,7 +31,7 @@ Models:
- Name: hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d - Name: hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d
In Collection: SSN In Collection: SSN
Config: configs/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py Config: configs/ssn/ssn_hv_regnet-400mf_secfpn_sbn-all_16xb2-2x_nus-3d.py
Metadata: Metadata:
Training Data: nuScenes Training Data: nuScenes
Training Memory (GB): 5.1 Training Memory (GB): 5.1
...@@ -45,7 +45,7 @@ Models: ...@@ -45,7 +45,7 @@ Models:
- Name: hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d - Name: hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d
In Collection: SSN In Collection: SSN
Config: configs/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py Config: configs/ssn/ssn_hv_secfpn_sbn-all_16xb2-2x_lyft-3d.py
Metadata: Metadata:
Training Data: Lyft Training Data: Lyft
Training Memory (GB): 8.5 Training Memory (GB): 8.5
......
_base_ = './hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py' _base_ = './ssn_hv_secfpn_sbn-all_16xb2-2x_lyft-3d.py'
# model settings # model settings
model = dict( model = dict(
type='MVXFasterRCNN', type='MVXFasterRCNN',
......
_base_ = './hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py' _base_ = './ssn_hv_secfpn_sbn-all_16xb2-2x_nus-3d.py'
# model settings # model settings
model = dict( model = dict(
type='MVXFasterRCNN', type='MVXFasterRCNN',
......
_base_ = [ _base_ = [
'../_base_/models/hv_pointpillars_fpn_lyft.py', '../_base_/models/pointpillars_hv_fpn_lyft.py',
'../_base_/datasets/lyft-3d.py', '../_base_/datasets/lyft-3d.py',
'../_base_/schedules/schedule_2x.py', '../_base_/schedules/schedule-2x.py',
'../_base_/default_runtime.py', '../_base_/default_runtime.py',
] ]
point_cloud_range = [-100, -100, -5, 100, 100, 3] point_cloud_range = [-100, -100, -5, 100, 100, 3]
......
_base_ = [ _base_ = [
'../_base_/models/hv_pointpillars_fpn_nus.py', '../_base_/models/pointpillars_hv_fpn_nus.py',
'../_base_/datasets/nus-3d.py', '../_base_/datasets/nus-3d.py',
'../_base_/schedules/schedule_2x.py', '../_base_/schedules/schedule-2x.py',
'../_base_/default_runtime.py', '../_base_/default_runtime.py',
] ]
# Note that the order of class names should be consistent with # Note that the order of class names should be consistent with
......
...@@ -20,15 +20,15 @@ We implement VoteNet and provide the result and checkpoints on ScanNet and SUNRG ...@@ -20,15 +20,15 @@ We implement VoteNet and provide the result and checkpoints on ScanNet and SUNRG
### ScanNet ### ScanNet
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download |
| :-----------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | :----------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [PointNet++](./votenet_8x8_scannet-3d-18class.py) | 3x | 4.1 | | 62.34 | 40.82 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503.log.json) | | [PointNet++](./votenet_8xb8_scannet-3d.py) | 3x | 4.1 | | 62.34 | 40.82 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503.log.json) |
### SUNRGBD ### SUNRGBD
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download |
| :------------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | :-----------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [PointNet++](./votenet_16x8_sunrgbd-3d-10class.py) | 3x | 8.1 | | 59.78 | 35.77 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823.log.json) | | [PointNet++](./votenet_8xb16_sunrgbd-3d.py) | 3x | 8.1 | | 59.78 | 35.77 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823.log.json) |
**Notice**: If your current mmdetection3d version >= 0.6.0, and you are using the checkpoints downloaded from the above links or using checkpoints trained with mmdetection3d version \< 0.6.0, the checkpoints have to be first converted via [tools/model_converters/convert_votenet_checkpoints.py](../../tools/model_converters/convert_votenet_checkpoints.py): **Notice**: If your current mmdetection3d version >= 0.6.0, and you are using the checkpoints downloaded from the above links or using checkpoints trained with mmdetection3d version \< 0.6.0, the checkpoints have to be first converted via [tools/model_converters/convert_votenet_checkpoints.py](../../tools/model_converters/convert_votenet_checkpoints.py):
...@@ -50,9 +50,9 @@ Adding IoU loss (simply = 1-IoU) boosts VoteNet's performance. To use IoU loss, ...@@ -50,9 +50,9 @@ Adding IoU loss (simply = 1-IoU) boosts VoteNet's performance. To use IoU loss,
iou_loss=dict(type='AxisAlignedIoULoss', reduction='sum', loss_weight=10.0 / 3.0) iou_loss=dict(type='AxisAlignedIoULoss', reduction='sum', loss_weight=10.0 / 3.0)
``` ```
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download |
| :-------------------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :------: | | :-----------------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :------: |
| [PointNet++](./votenet_iouloss_8x8_scannet-3d-18class.py) | 3x | 4.1 | | 63.81 | 44.21 | / | | [PointNet++](./votenet_head-iouloss_8xb8_scannet-3d.py) | 3x | 4.1 | | 63.81 | 44.21 | / |
For now, we only support calculating IoU loss for axis-aligned bounding boxes since the CUDA op of general 3D IoU calculation does not implement the backward method. Therefore, IoU loss can only be used for ScanNet dataset for now. For now, we only support calculating IoU loss for axis-aligned bounding boxes since the CUDA op of general 3D IoU calculation does not implement the backward method. Therefore, IoU loss can only be used for ScanNet dataset for now.
......
...@@ -15,9 +15,9 @@ Collections: ...@@ -15,9 +15,9 @@ Collections:
Version: v0.5.0 Version: v0.5.0
Models: Models:
- Name: votenet_16x8_sunrgbd-3d-10class.py - Name: votenet_8xb16_sunrgbd-3d.py
In Collection: VoteNet In Collection: VoteNet
Config: configs/votenet/votenet_16x8_sunrgbd-3d-10class.py Config: configs/votenet/votenet_8xb16_sunrgbd-3d.py
Metadata: Metadata:
Training Data: SUNRGBD Training Data: SUNRGBD
Training Memory (GB): 8.1 Training Memory (GB): 8.1
...@@ -29,9 +29,9 @@ Models: ...@@ -29,9 +29,9 @@ Models:
AP@0.5: 35.77 AP@0.5: 35.77
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth
- Name: votenet_8x8_scannet-3d-18class.py - Name: votenet_8xb8_scannet-3d.py
In Collection: VoteNet In Collection: VoteNet
Config: configs/votenet/votenet_8x8_scannet-3d-18class.py Config: configs/votenet/votenet_8xb8_scannet-3d.py
Metadata: Metadata:
Training Data: ScanNet Training Data: ScanNet
Training Memory (GB): 4.1 Training Memory (GB): 4.1
...@@ -45,7 +45,7 @@ Models: ...@@ -45,7 +45,7 @@ Models:
- Name: votenet_iouloss_8x8_scannet-3d-18class - Name: votenet_iouloss_8x8_scannet-3d-18class
In Collection: VoteNet In Collection: VoteNet
Config: configs/votenet/votenet_iouloss_8x8_scannet-3d-18class.py Config: configs/votenet/votenet_head-iouloss_8xb8_scannet-3d.py
Metadata: Metadata:
Training Data: ScanNet Training Data: ScanNet
Training Memory (GB): 4.1 Training Memory (GB): 4.1
......
# TODO refactor the config of sunrgbd # TODO refactor the config of sunrgbd
_base_ = [ _base_ = [
'../_base_/datasets/sunrgbd-3d-10class.py', '../_base_/models/votenet.py', '../_base_/datasets/sunrgbd-3d.py', '../_base_/models/votenet.py',
'../_base_/schedules/schedule_3x.py', '../_base_/default_runtime.py' '../_base_/schedules/schedule-3x.py', '../_base_/default_runtime.py'
] ]
# model settings # model settings
model = dict( model = dict(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment