Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
mmdetection3d
Commits
e8298d24
Commit
e8298d24
authored
Jul 06, 2020
by
zhangwenwei
Browse files
Merge branch 'getting_started' into 'master'
Getting started See merge request open-mmlab/mmdet.3d!108
parents
dd2f285b
fb8f331b
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
29 additions
and
36 deletions
+29
-36
configs/votenet/README.md
configs/votenet/README.md
+2
-2
docs/getting_started.md
docs/getting_started.md
+27
-34
No files found.
configs/votenet/README.md
View file @
e8298d24
...
@@ -16,9 +16,9 @@ We implement VoteNet and provide the result and checkpoints on ScanNet and SUNRG
...
@@ -16,9 +16,9 @@ We implement VoteNet and provide the result and checkpoints on ScanNet and SUNRG
### ScanNet
### ScanNet
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 |AP@0.5| Download |
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 |AP@0.5| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
|
[
PointNet++
](
./votenet_8x8_scannet-3d-18class.py
)
| 3x |4.1||62.90|39.91|
[
model
](
https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/votenet/votenet_
16
x8_s
unrgbd
-3d-1
0
class/votenet_
16
x8_s
unrgbd
-3d-1
0
class_20200620_230238-
4483c0c0
.pth
)
|
[
log
](
https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/votenet/votenet_
16
x8_s
unrgbd
-3d-1
0
class/votenet_
16
x8_s
unrgbd
-3d-1
0
class_20200620_230238.log.json
)
|
|
[
PointNet++
](
./votenet_8x8_scannet-3d-18class.py
)
| 3x |4.1||62.90|39.91|
[
model
](
https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/votenet/votenet_
8
x8_s
cannet
-3d-1
8
class/votenet_
8
x8_s
cannet
-3d-1
8
class_20200620_230238-
2cea9c3a
.pth
)
|
[
log
](
https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/votenet/votenet_
8
x8_s
cannet
-3d-1
8
class/votenet_
8
x8_s
cannet
-3d-1
8
class_20200620_230238.log.json
)
|
### SUNRGBD
### SUNRGBD
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 |AP@0.5| Download |
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 |AP@0.5| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
|
[
PointNet++
](
./votenet_16x8_sunrgbd-3d-10class.py
)
| 3x |8.1||59.07|35.77|
[
model
](
https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/votenet/votenet_
8
x8_s
cannet
-3d-1
8
class/votenet_
8
x8_s
cannet
-3d-1
8
class_20200620_230238-
2cea9c3a
.pth
)
|
[
log
](
https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/votenet/votenet_
8
x8_s
cannet
-3d-1
8
class/votenet_
8
x8_s
cannet
-3d-1
8
class_20200620_230238.log.json
)
|
|
[
PointNet++
](
./votenet_16x8_sunrgbd-3d-10class.py
)
| 3x |8.1||59.07|35.77|
[
model
](
https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/votenet/votenet_
16
x8_s
unrgbd
-3d-1
0
class/votenet_
16
x8_s
unrgbd
-3d-1
0
class_20200620_230238-
4483c0c0
.pth
)
|
[
log
](
https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/votenet/votenet_
16
x8_s
unrgbd
-3d-1
0
class/votenet_
16
x8_s
unrgbd
-3d-1
0
class_20200620_230238.log.json
)
|
docs/getting_started.md
View file @
e8298d24
...
@@ -117,65 +117,58 @@ Examples:
...
@@ -117,65 +117,58 @@ Examples:
Assume that you have already downloaded the checkpoints to the directory
`checkpoints/`
.
Assume that you have already downloaded the checkpoints to the directory
`checkpoints/`
.
1.
Test
Faster R-CNN and visualize the results. Press any key for the next image
.
1.
Test
votenet on ScanNet and save the points and prediction visualization results
.
```
shell
```
shell
python tools/test.py configs/
faster_rcnn_r50_fpn_1x_coco
.py
\
python tools/test.py configs/
votenet/votenet_8x8_scannet-3d-18class
.py
\
checkpoints/
faster_rcnn_r50_fpn_1x_20181010-3d1b3351
.pth
\
checkpoints/
votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a
.pth
\
--show
--show
--show-dir
./data/scannet/show_results
```
```
2.
Test
Faster R-CNN and
save the p
a
int
ed images for latter visualization
.
2.
Test
votenet on ScanNet,
save the p
o
int
s, prediction, groundtruth visualization results, and evaluate the mAP
.
```
shell
```
shell
python tools/test.py configs/faster_rcnn_r50_fpn_1x.py
\
python tools/test.py configs/votenet/votenet_8x8_scannet-3d-18class.py
\
checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth
\
checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth
\
--show-dir
faster_rcnn_r50_fpn_1x_results
```
3.
Test Faster R-CNN on PASCAL VOC (without saving the test results) and evaluate the mAP.
```
shell
python tools/test.py configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc.py
\
checkpoints/SOME_CHECKPOINT.pth
\
--eval
mAP
--eval
mAP
--options
'show=True'
'out_dir=./data/scannet/show_results'
```
```
4
.
Test
Mask R-CNN with 8 GPUs,
and evaluate the
bbox and mask
AP.
3
.
Test
votenet on ScanNet (without saving the test results)
and evaluate the
m
AP.
```
shell
```
shell
./
tools/
dist_
test.
sh
configs/
mask_rcnn_r50_fpn_1x_coco
.py
\
python
tools/test.
py
configs/
votenet/votenet_8x8_scannet-3d-18class
.py
\
checkpoints/
mask_rcnn_r50_fpn_1x_20181010-069fa190
.pth
\
checkpoints/
votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a
.pth
\
8
--out
results.pkl
--eval
bbox segm
--eval
mAP
```
```
5
.
Test
Mask R-CNN
with 8 GPUs, and evaluate the
**classwise**
bbox and mask
AP.
4
.
Test
SECOND
with 8 GPUs, and evaluate the
m
AP.
```
shell
```
shell
./tools/
dist
_test.sh
configs/mask_rcnn_r50_fpn_1x_coco
.py
\
./tools/
slurm
_test.sh
${
PARTITION
}
${
JOB_NAME
}
configs/second/hv_second_secfpn_6x8_80e_kitti-3d-3class
.py
\
checkpoints/
mask_rcnn_r50_fpn_1x_20181010-069fa190
.pth
\
checkpoints/
hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238-9208083a
.pth
\
8
--out
results.pkl
--eval
bbox segm
--options
"classwise=True"
--out
results.pkl
--eval
mAP
```
```
6
.
Test
Mask R-CNN on COCO test-dev
with 8 GPUs, and generate the json file to be submit to the official evaluation server.
5
.
Test
PointPillars on nuscenes
with 8 GPUs, and generate the json file to be submit to the official evaluation server.
```
shell
```
shell
./tools/
dist
_test.sh
configs/mask_rcnn_r50_fpn_1x_coco
.py
\
./tools/
slurm
_test.sh
${
PARTITION
}
${
JOB_NAME
}
configs/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d
.py
\
checkpoints/
mask_rcnn_r50_fpn_1x_20181010-069fa190
.pth
\
checkpoints/
hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d
.pth
\
8
--format-only
--options
"
jsonfile_prefix=./
mask_rcnn_test-dev
_results
"
--format-only
--options
'
jsonfile_prefix=./
pointpillars_nuscenes
_results
'
```
```
You will get two json files
`mask_rcnn_test-dev_results.bbox.json`
and
`mask_rcnn_test-dev_results.segm.json`
.
The generated results be under
`./pointpillars_nuscenes_results`
directory
.
7
.
Test
Mask R-CNN on Cityscapes test
with 8 GPUs, and generate the
txt and png file
s to be submit to the official evaluation server.
6
.
Test
SECOND on KITTI
with 8 GPUs, and generate the
pkl files and submission data
s to be submit to the official evaluation server.
```
shell
```
shell
./tools/
dist
_test.sh
configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscape
s.py
\
./tools/
slurm
_test.sh
${
PARTITION
}
${
JOB_NAME
}
configs/second/hv_second_secfpn_6x8_80e_kitti-3d-3clas
s.py
\
checkpoints/
mask_rcnn_r50_fpn_1x_cityscapes_20200227-afe51d5
a.pth
\
checkpoints/
hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238-9208083
a.pth
\
8
--format-only
--options
"txt
file_prefix=./
mask_rcnn_cityscapes_test
_results
"
--format-only
--options
'pkl
file_prefix=./
second_kitti_results'
'submission_prefix=./second_kitti
_results
'
```
```
The generated
png and txt would be under
`./mask_rcnn_cityscapes_test
_results`
directory.
The generated
results be under
`./second_kitti
_results`
directory.
### Visualization
### Visualization
...
@@ -189,7 +182,7 @@ Aftering running this command, plotted results ***_points.obj and ***_pred.ply f
...
@@ -189,7 +182,7 @@ Aftering running this command, plotted results ***_points.obj and ***_pred.ply f
To see the points, detection results and ground truth of SUNRGBD, ScanNet or KITTI during evaluation time, you can run the following command
To see the points, detection results and ground truth of SUNRGBD, ScanNet or KITTI during evaluation time, you can run the following command
```bash
```bash
python tools/test.py ${CONFIG_FILE} ${CKPT_PATH} --eval 'mAP' --options
"
show=True
" "
out_dir=${SHOW_DIR}
"
python tools/test.py ${CONFIG_FILE} ${CKPT_PATH} --eval 'mAP' --options
'
show=True
' '
out_dir=${SHOW_DIR}
'
```
```
After running this command, you will obtain ***_points.ob, ***_pred.ply files and ***_gt.ply in `
${SHOW_DIR}
`.
After running this command, you will obtain ***_points.ob, ***_pred.ply files and ***_gt.ply in `
${SHOW_DIR}
`.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment