We follow the procedure in [votenet](https://github.com/facebookresearch/votenet/).
1. Download ScanNet v2 data [HERE](https://github.com/ScanNet/ScanNet). Move/link the `scans` folder such that under `scans` there should be folders with names such as `scene0001_01`.
1. Download ScanNet v2 data [HERE](https://github.com/ScanNet/ScanNet). Link or move the 'scans' folder to this level of directory.
2.Extract point clouds and annotations (semantic seg, instance seg etc.) by running `python batch_load_scannet_data.py`, which will create a folder named `scannet_train_instance_data` here.
2.In this level of directory, extract point clouds and annotations by running `python batch_load_scannet_data.py`.
3. Enter the project root directory, generate training data by running `python tools/create_data.py scannet --root-path ./data/scannet --out-dir ./data/scannet --extra-tag scannet`.
@@ -3,10 +3,29 @@ We follow the procedure in [votenet](https://github.com/facebookresearch/votenet
1. Download SUNRGBD v2 data [HERE](http://rgbd.cs.princeton.edu/data/). Then, move SUNRGBD.zip, SUNRGBDMeta2DBB_v2.mat, SUNRGBDMeta3DBB_v2.mat and SUNRGBDtoolbox.zip to the OFFICIAL_SUNRGBD folder, unzip the zip files.
2. Enter the `matlab` folder, run`extract_split.m`, `extract_rgbd_data_v2.m` and `extract_rgbd_data_v1.m` to extract point clouds and annotations.
2. Enter the `matlab` folder, Extract point clouds and annotations by running`extract_split.m`, `extract_rgbd_data_v2.m` and `extract_rgbd_data_v1.m`.
3. Back to this level, prepare data by running `python sunrgbd_data.py --gen_v1_data`
3. Back to this level of directory, prepare data by running `python sunrgbd_data.py --gen_v1_data`.
4. Enter the project root directory, Generate training data by running `python tools/create_data.py sunrgbd --root-path ./data/sunrgbd --out-dir ./data/sunrgbd --extra-tag sunrgbd`.
4. Enter the project root directory, generate training data by running `python tools/create_data.py sunrgbd --root-path ./data/sunrgbd --out-dir ./data/sunrgbd --extra-tag sunrgbd`.
NOTE: SUNRGBDtoolbox.zip should have MD5 hash `18d22e1761d36352f37232cba102f91f` (you can check the hash with `md5 SUNRGBDtoolbox.zip` on Mac OS or `md5sum SUNRGBDtoolbox.zip` on Linux)