Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
mmdetection3d
Commits
d7067e44
Unverified
Commit
d7067e44
authored
Dec 03, 2022
by
Wenwei Zhang
Committed by
GitHub
Dec 03, 2022
Browse files
Bump version to v1.1.0rc2
Bump to v1.1.0rc2
parents
28fe73d2
fb0e57e5
Changes
360
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
377 additions
and
61 deletions
+377
-61
configs/paconv/paconv_ssg-cuda_8xb8-cosine-200e_s3dis-seg.py
configs/paconv/paconv_ssg-cuda_8xb8-cosine-200e_s3dis-seg.py
+1
-2
configs/paconv/paconv_ssg_8xb8-cosine-150e_s3dis-seg.py
configs/paconv/paconv_ssg_8xb8-cosine-150e_s3dis-seg.py
+0
-1
configs/parta2/README.md
configs/parta2/README.md
+2
-2
configs/parta2/metafile.yml
configs/parta2/metafile.yml
+4
-4
configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
...arta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
+3
-3
configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py
...s/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py
+6
-10
configs/pgd/metafile.yml
configs/pgd/metafile.yml
+5
-5
configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d.py
...igs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d.py
+5
-15
configs/pgd/pgd_r101_fpn-head_dcn_16xb3_waymoD5-fov-mono3d.py
...igs/pgd/pgd_r101_fpn-head_dcn_16xb3_waymoD5-fov-mono3d.py
+112
-0
configs/pgd/pgd_r101_fpn-head_dcn_16xb3_waymoD5-mono3d.py
configs/pgd/pgd_r101_fpn-head_dcn_16xb3_waymoD5-mono3d.py
+111
-0
configs/pgd/pgd_r101_fpn-head_dcn_16xb3_waymoD5-mv-mono3d.py
configs/pgd/pgd_r101_fpn-head_dcn_16xb3_waymoD5-mv-mono3d.py
+112
-0
configs/point_rcnn/metafile.yml
configs/point_rcnn/metafile.yml
+1
-1
configs/point_rcnn/point-rcnn_8xb2_kitti-3d-3class.py
configs/point_rcnn/point-rcnn_8xb2_kitti-3d-3class.py
+1
-1
configs/pointnet2/metafile.yml
configs/pointnet2/metafile.yml
+6
-6
configs/pointnet2/pointnet2_msg_2xb16-cosine-250e_scannet-seg-xyz-only.py
...2/pointnet2_msg_2xb16-cosine-250e_scannet-seg-xyz-only.py
+1
-2
configs/pointnet2/pointnet2_msg_2xb16-cosine-250e_scannet-seg.py
.../pointnet2/pointnet2_msg_2xb16-cosine-250e_scannet-seg.py
+1
-2
configs/pointnet2/pointnet2_msg_2xb16-cosine-80e_s3dis-seg.py
...igs/pointnet2/pointnet2_msg_2xb16-cosine-80e_s3dis-seg.py
+1
-2
configs/pointnet2/pointnet2_ssg_2xb16-cosine-200e_scannet-seg-xyz-only.py
...2/pointnet2_ssg_2xb16-cosine-200e_scannet-seg-xyz-only.py
+1
-1
configs/pointnet2/pointnet2_ssg_2xb16-cosine-200e_scannet-seg.py
.../pointnet2/pointnet2_ssg_2xb16-cosine-200e_scannet-seg.py
+1
-1
configs/pointnet2/pointnet2_ssg_2xb16-cosine-50e_s3dis-seg.py
...igs/pointnet2/pointnet2_ssg_2xb16-cosine-50e_s3dis-seg.py
+3
-3
No files found.
configs/paconv/paconv_ssg-cuda_8xb8-cosine-200e_s3dis-seg.py
View file @
d7067e44
...
@@ -58,5 +58,4 @@ train_pipeline = [
...
@@ -58,5 +58,4 @@ train_pipeline = [
train_dataloader
=
dict
(
batch_size
=
8
,
dataset
=
dict
(
pipeline
=
train_pipeline
))
train_dataloader
=
dict
(
batch_size
=
8
,
dataset
=
dict
(
pipeline
=
train_pipeline
))
# runtime settings
# runtime settings
val_cfg
=
dict
(
interval
=
1
)
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
200
,
val_interval
=
1
)
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
200
)
configs/paconv/paconv_ssg_8xb8-cosine-150e_s3dis-seg.py
View file @
d7067e44
...
@@ -56,4 +56,3 @@ train_pipeline = [
...
@@ -56,4 +56,3 @@ train_pipeline = [
]
]
train_dataloader
=
dict
(
batch_size
=
8
,
dataset
=
dict
(
pipeline
=
train_pipeline
))
train_dataloader
=
dict
(
batch_size
=
8
,
dataset
=
dict
(
pipeline
=
train_pipeline
))
val_cfg
=
dict
(
interval
=
1
)
configs/parta2/README.md
View file @
d7067e44
...
@@ -22,8 +22,8 @@ We implement Part-A^2 and provide its results and checkpoints on KITTI dataset.
...
@@ -22,8 +22,8 @@ We implement Part-A^2 and provide its results and checkpoints on KITTI dataset.
| Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :-------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| :-------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
[
SECFPN
](
./
P
art
A
2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
)
| 3 Class | cyclic 80e | 4.1 | | 68.33 |
[
model
](
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth
)
\|
[
log
](
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017.log.json
)
|
|
[
SECFPN
](
./
p
art
a
2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
)
| 3 Class | cyclic 80e | 4.1 | | 68.33 |
[
model
](
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth
)
\|
[
log
](
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017.log.json
)
|
|
[
SECFPN
](
./
P
art
A
2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py
)
| Car | cyclic 80e | 4.0 | | 79.08 |
[
model
](
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017-cb7ff621.pth
)
\|
[
log
](
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017.log.json
)
|
|
[
SECFPN
](
./
p
art
a
2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py
)
| Car | cyclic 80e | 4.0 | | 79.08 |
[
model
](
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017-cb7ff621.pth
)
\|
[
log
](
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017.log.json
)
|
## Citation
## Citation
...
...
configs/parta2/metafile.yml
View file @
d7067e44
...
@@ -16,9 +16,9 @@ Collections:
...
@@ -16,9 +16,9 @@ Collections:
Version
:
v0.5.0
Version
:
v0.5.0
Models
:
Models
:
-
Name
:
hv_PartA2
_secfpn_
2x8_
cyclic
_
80e_kitti-3d-3class
-
Name
:
parta2_hv
_secfpn_
8xb2-
cyclic
-
80e_kitti-3d-3class
In Collection
:
Part-A^2
In Collection
:
Part-A^2
Config
:
configs/parta2/
P
art
A
2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
Config
:
configs/parta2/
p
art
a
2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
Metadata
:
Metadata
:
Training Memory (GB)
:
4.1
Training Memory (GB)
:
4.1
Results
:
Results
:
...
@@ -28,9 +28,9 @@ Models:
...
@@ -28,9 +28,9 @@ Models:
mAP
:
68.33
mAP
:
68.33
Weights
:
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth
Weights
:
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth
-
Name
:
hv_PartA2
_secfpn_
2x8_
cyclic
_
80e_kitti-3d-car
-
Name
:
parta2_hv
_secfpn_
8xb2-
cyclic
-
80e_kitti-3d-car
In Collection
:
Part-A^2
In Collection
:
Part-A^2
Config
:
configs/parta2/
P
art
A
2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py
Config
:
configs/parta2/
p
art
a
2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py
Metadata
:
Metadata
:
Training Memory (GB)
:
4.0
Training Memory (GB)
:
4.0
Results
:
Results
:
...
...
configs/parta2/
P
art
A
2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
→
configs/parta2/
p
art
a
2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
View file @
d7067e44
...
@@ -84,7 +84,7 @@ train_dataloader = dict(
...
@@ -84,7 +84,7 @@ train_dataloader = dict(
data_prefix
=
dict
(
pts
=
'training/velodyne_reduced'
),
data_prefix
=
dict
(
pts
=
'training/velodyne_reduced'
),
pipeline
=
train_pipeline
,
pipeline
=
train_pipeline
,
modality
=
input_modality
,
modality
=
input_modality
,
metainfo
=
dict
(
CLASSES
=
class_names
),
metainfo
=
dict
(
classes
=
class_names
),
box_type_3d
=
'LiDAR'
,
box_type_3d
=
'LiDAR'
,
test_mode
=
False
)))
test_mode
=
False
)))
test_dataloader
=
dict
(
test_dataloader
=
dict
(
...
@@ -100,7 +100,7 @@ test_dataloader = dict(
...
@@ -100,7 +100,7 @@ test_dataloader = dict(
data_prefix
=
dict
(
pts
=
'training/velodyne_reduced'
),
data_prefix
=
dict
(
pts
=
'training/velodyne_reduced'
),
pipeline
=
test_pipeline
,
pipeline
=
test_pipeline
,
modality
=
input_modality
,
modality
=
input_modality
,
metainfo
=
dict
(
CLASSES
=
class_names
),
metainfo
=
dict
(
classes
=
class_names
),
box_type_3d
=
'LiDAR'
,
box_type_3d
=
'LiDAR'
,
test_mode
=
True
))
test_mode
=
True
))
val_dataloader
=
dict
(
val_dataloader
=
dict
(
...
@@ -116,7 +116,7 @@ val_dataloader = dict(
...
@@ -116,7 +116,7 @@ val_dataloader = dict(
data_prefix
=
dict
(
pts
=
'training/velodyne_reduced'
),
data_prefix
=
dict
(
pts
=
'training/velodyne_reduced'
),
pipeline
=
eval_pipeline
,
pipeline
=
eval_pipeline
,
modality
=
input_modality
,
modality
=
input_modality
,
metainfo
=
dict
(
CLASSES
=
class_names
),
metainfo
=
dict
(
classes
=
class_names
),
box_type_3d
=
'LiDAR'
,
box_type_3d
=
'LiDAR'
,
test_mode
=
True
))
test_mode
=
True
))
val_evaluator
=
dict
(
val_evaluator
=
dict
(
...
...
configs/parta2/
P
art
A
2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py
→
configs/parta2/
p
art
a
2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py
View file @
d7067e44
_base_
=
'./
P
art
A
2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py'
_base_
=
'./
p
art
a
2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py'
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
# velodyne coordinates, x, y, z
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
# velodyne coordinates, x, y, z
...
@@ -124,19 +124,15 @@ test_pipeline = [
...
@@ -124,19 +124,15 @@ test_pipeline = [
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'RandomFlip3D'
),
dict
(
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
]),
type
=
'DefaultFormatBundle3D'
,
dict
(
type
=
'Pack3DDetInputs'
,
keys
=
[
'points'
])
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
])
]
]
train_dataloader
=
dict
(
train_dataloader
=
dict
(
dataset
=
dict
(
dataset
=
dict
(
dataset
=
dict
(
dataset
=
dict
(
pipeline
=
train_pipeline
,
metainfo
=
dict
(
CLASSES
=
class_names
))))
pipeline
=
train_pipeline
,
metainfo
=
dict
(
classes
=
class_names
))))
test_dataloader
=
dict
(
test_dataloader
=
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
,
metainfo
=
dict
(
CLASSES
=
class_names
)))
dataset
=
dict
(
pipeline
=
test_pipeline
,
metainfo
=
dict
(
classes
=
class_names
)))
val_dataloader
=
dict
(
dataset
=
dict
(
metainfo
=
dict
(
CLASSES
=
class_names
)))
val_dataloader
=
dict
(
dataset
=
dict
(
metainfo
=
dict
(
classes
=
class_names
)))
find_unused_parameters
=
True
find_unused_parameters
=
True
configs/pgd/metafile.yml
View file @
d7067e44
...
@@ -16,7 +16,7 @@ Collections:
...
@@ -16,7 +16,7 @@ Collections:
Version
:
v1.0.0
Version
:
v1.0.0
Models
:
Models
:
-
Name
:
pgd_r101
_
caffe_fpn_
gn-
head
_3x4_
4x_kitti-mono3d
-
Name
:
pgd_r101
-
caffe_fpn_head
-gn_4xb3-
4x_kitti-mono3d
In Collection
:
PGD
In Collection
:
PGD
Config
:
configs/pgd/pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d.py
Config
:
configs/pgd/pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d.py
Metadata
:
Metadata
:
...
@@ -28,7 +28,7 @@ Models:
...
@@ -28,7 +28,7 @@ Models:
mAP
:
18.33
mAP
:
18.33
Weights
:
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d_20211022_102608-8a97533b.pth
Weights
:
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d_20211022_102608-8a97533b.pth
-
Name
:
pgd_r101
_
caffe_fpn_
gn-
head
_2x16_
1x_nus-mono3d
-
Name
:
pgd_r101
-
caffe_fpn_head
-gn_16xb2-
1x_nus-mono3d
In Collection
:
PGD
In Collection
:
PGD
Config
:
configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d.py
Config
:
configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d.py
Metadata
:
Metadata
:
...
@@ -41,7 +41,7 @@ Models:
...
@@ -41,7 +41,7 @@ Models:
NDS
:
39.3
NDS
:
39.3
Weights
:
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_20211116_195350-f4b5eec2.pth
Weights
:
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_20211116_195350-f4b5eec2.pth
-
Name
:
pgd_r101
_
caffe_fpn_
gn-
head
_2x16_
1x_nus-mono3d_finetune
-
Name
:
pgd_r101
-
caffe_fpn_head
-gn_16xb2-
1x_nus-mono3d_finetune
In Collection
:
PGD
In Collection
:
PGD
Config
:
configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d_finetune.py
Config
:
configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d_finetune.py
Metadata
:
Metadata
:
...
@@ -54,7 +54,7 @@ Models:
...
@@ -54,7 +54,7 @@ Models:
NDS
:
41.1
NDS
:
41.1
Weights
:
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune_20211118_093245-fd419681.pth
Weights
:
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune_20211118_093245-fd419681.pth
-
Name
:
pgd_r101
_
caffe_fpn_
gn-
head
_2x16_
2x_nus-mono3d
-
Name
:
pgd_r101
-
caffe_fpn_head
-gn_16xb2-
2x_nus-mono3d
In Collection
:
PGD
In Collection
:
PGD
Config
:
configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-2x_nus-mono3d.py
Config
:
configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-2x_nus-mono3d.py
Metadata
:
Metadata
:
...
@@ -67,7 +67,7 @@ Models:
...
@@ -67,7 +67,7 @@ Models:
NDS
:
40.9
NDS
:
40.9
Weights
:
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_20211112_125314-cb677266.pth
Weights
:
https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_20211112_125314-cb677266.pth
-
Name
:
pgd_r101
_
caffe_fpn_
gn-
head
_2x16_
2x_nus-mono3d_finetune
-
Name
:
pgd_r101
-
caffe_fpn_head
-gn_16xb2-
2x_nus-mono3d_finetune
In Collection
:
PGD
In Collection
:
PGD
Config
:
configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-2x_nus-mono3d_finetune.py
Config
:
configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-2x_nus-mono3d_finetune.py
Metadata
:
Metadata
:
...
...
configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d.py
View file @
d7067e44
...
@@ -19,7 +19,8 @@ model = dict(
...
@@ -19,7 +19,8 @@ model = dict(
(),
# velo
(),
# velo
(
256
,
)
# bbox2d
(
256
,
)
# bbox2d
),
),
loss_depth
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
),
loss_depth
=
dict
(
type
=
'mmdet.SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
),
bbox_coder
=
dict
(
bbox_coder
=
dict
(
type
=
'PGDBBoxCoder'
,
type
=
'PGDBBoxCoder'
,
base_depths
=
((
31.99
,
21.12
),
(
37.15
,
24.63
),
(
39.69
,
23.97
),
base_depths
=
((
31.99
,
21.12
),
(
37.15
,
24.63
),
(
39.69
,
23.97
),
...
@@ -43,8 +44,6 @@ class_names = [
...
@@ -43,8 +44,6 @@ class_names = [
'car'
,
'truck'
,
'trailer'
,
'bus'
,
'construction_vehicle'
,
'bicycle'
,
'car'
,
'truck'
,
'trailer'
,
'bus'
,
'construction_vehicle'
,
'bicycle'
,
'motorcycle'
,
'pedestrian'
,
'traffic_cone'
,
'barrier'
'motorcycle'
,
'pedestrian'
,
'traffic_cone'
,
'barrier'
]
]
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFileMono3D'
),
dict
(
type
=
'LoadImageFromFileMono3D'
),
dict
(
dict
(
...
@@ -57,11 +56,8 @@ train_pipeline = [
...
@@ -57,11 +56,8 @@ train_pipeline = [
with_bbox_depth
=
True
),
with_bbox_depth
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1600
,
900
),
keep_ratio
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1600
,
900
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio_bev_horizontal
=
0.5
),
dict
(
type
=
'RandomFlip3D'
,
flip_ratio_bev_horizontal
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
),
dict
(
dict
(
type
=
'
Collect3D
'
,
type
=
'
Pack3DDetInputs
'
,
keys
=
[
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_bboxes_labels'
,
'attr_labels'
,
'img'
,
'gt_bboxes'
,
'gt_bboxes_labels'
,
'attr_labels'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
,
'centers2d'
,
'depths'
'gt_bboxes_3d'
,
'gt_labels_3d'
,
'centers2d'
,
'depths'
...
@@ -75,14 +71,8 @@ test_pipeline = [
...
@@ -75,14 +71,8 @@ test_pipeline = [
flip
=
False
,
flip
=
False
,
transforms
=
[
transforms
=
[
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
]),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'Pack3DDetInputs'
,
keys
=
[
'img'
]),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'img'
]),
])
]
]
data
=
dict
(
data
=
dict
(
samples_per_gpu
=
2
,
samples_per_gpu
=
2
,
...
...
configs/pgd/pgd_r101_fpn-head_dcn_16xb3_waymoD5-fov-mono3d.py
0 → 100644
View file @
d7067e44
_base_
=
[
'../_base_/datasets/waymoD5-fov-mono3d-3class.py'
,
'../_base_/models/pgd.py'
,
'../_base_/schedules/mmdet-schedule-1x.py'
,
'../_base_/default_runtime.py'
]
# model settings
model
=
dict
(
backbone
=
dict
(
type
=
'mmdet.ResNet'
,
depth
=
101
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
,
init_cfg
=
dict
(
type
=
'Pretrained'
,
checkpoint
=
'torchvision://resnet101'
),
dcn
=
dict
(
type
=
'DCNv2'
,
deform_groups
=
1
,
fallback_on_stride
=
False
),
stage_with_dcn
=
(
False
,
False
,
True
,
True
)),
neck
=
dict
(
num_outs
=
3
),
bbox_head
=
dict
(
num_classes
=
3
,
bbox_code_size
=
7
,
pred_attrs
=
False
,
pred_velo
=
False
,
pred_bbox2d
=
True
,
use_onlyreg_proj
=
True
,
strides
=
(
8
,
16
,
32
),
regress_ranges
=
((
-
1
,
128
),
(
128
,
256
),
(
256
,
1e8
)),
group_reg_dims
=
(
2
,
1
,
3
,
1
,
16
,
4
),
# offset, depth, size, rot, kpts, bbox2d
reg_branch
=
(
(
256
,
),
# offset
(
256
,
),
# depth
(
256
,
),
# size
(
256
,
),
# rot
(
256
,
),
# kpts
(
256
,
)
# bbox2d
),
centerness_branch
=
(
256
,
),
loss_cls
=
dict
(
type
=
'mmdet.FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'mmdet.SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
),
loss_dir
=
dict
(
type
=
'mmdet.CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_centerness
=
dict
(
type
=
'mmdet.CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
use_depth_classifier
=
True
,
depth_branch
=
(
256
,
),
depth_range
=
(
0
,
50
),
depth_unit
=
10
,
division
=
'uniform'
,
depth_bins
=
6
,
pred_keypoints
=
True
,
weight_dim
=
1
,
loss_depth
=
dict
(
type
=
'UncertainSmoothL1Loss'
,
alpha
=
1.0
,
beta
=
3.0
,
loss_weight
=
1.0
),
loss_bbox2d
=
dict
(
type
=
'mmdet.SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
0.0
),
loss_consistency
=
dict
(
type
=
'mmdet.GIoULoss'
,
loss_weight
=
0.0
),
bbox_coder
=
dict
(
type
=
'PGDBBoxCoder'
,
base_depths
=
((
41.01
,
18.44
),
),
base_dims
=
(
(
4.73
,
1.77
,
2.08
),
(
0.91
,
1.74
,
0.84
),
(
1.81
,
1.77
,
0.84
),
),
code_size
=
7
)),
# set weight 1.0 for base 7 dims (offset, depth, size, rot)
# 0.2 for 16-dim keypoint offsets and 1.0 for 4-dim 2D distance targets
train_cfg
=
dict
(
code_weight
=
[
1.0
,
1.0
,
0.2
,
1.0
,
1.0
,
1.0
,
1.0
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
1.0
,
1.0
,
1.0
,
1.0
]),
test_cfg
=
dict
(
nms_pre
=
100
,
nms_thr
=
0.05
,
score_thr
=
0.001
,
max_per_img
=
20
))
# optimizer
optim_wrapper
=
dict
(
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.008
,
),
paramwise_cfg
=
dict
(
bias_lr_mult
=
2.
,
bias_decay_mult
=
0.
),
clip_grad
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
param_scheduler
=
[
dict
(
type
=
'LinearLR'
,
start_factor
=
1.0
/
3
,
by_epoch
=
False
,
begin
=
0
,
end
=
500
),
dict
(
type
=
'MultiStepLR'
,
begin
=
0
,
end
=
24
,
by_epoch
=
True
,
milestones
=
[
16
,
22
],
gamma
=
0.1
)
]
total_epochs
=
24
runner
=
dict
(
max_epochs
=
total_epochs
)
train_cfg
=
dict
(
type
=
'EpochBasedTrainLoop'
,
max_epochs
=
24
,
val_interval
=
24
)
val_cfg
=
dict
(
type
=
'ValLoop'
)
test_cfg
=
dict
(
type
=
'TestLoop'
)
configs/pgd/pgd_r101_fpn-head_dcn_16xb3_waymoD5-mono3d.py
0 → 100644
View file @
d7067e44
_base_
=
[
'../_base_/datasets/waymoD5-mono3d-3class.py'
,
'../_base_/models/pgd.py'
,
'../_base_/schedules/mmdet-schedule-1x.py'
,
'../_base_/default_runtime.py'
]
# model settings
model
=
dict
(
backbone
=
dict
(
type
=
'mmdet.ResNet'
,
depth
=
101
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
,
init_cfg
=
dict
(
type
=
'Pretrained'
,
checkpoint
=
'torchvision://resnet101'
),
dcn
=
dict
(
type
=
'DCNv2'
,
deform_groups
=
1
,
fallback_on_stride
=
False
),
stage_with_dcn
=
(
False
,
False
,
True
,
True
)),
neck
=
dict
(
num_outs
=
3
),
bbox_head
=
dict
(
num_classes
=
3
,
bbox_code_size
=
7
,
pred_attrs
=
False
,
pred_velo
=
False
,
pred_bbox2d
=
True
,
use_onlyreg_proj
=
True
,
strides
=
(
8
,
16
,
32
),
regress_ranges
=
((
-
1
,
128
),
(
128
,
256
),
(
256
,
1e8
)),
group_reg_dims
=
(
2
,
1
,
3
,
1
,
16
,
4
),
# offset, depth, size, rot, kpts, bbox2d
reg_branch
=
(
(
256
,
),
# offset
(
256
,
),
# depth
(
256
,
),
# size
(
256
,
),
# rot
(
256
,
),
# kpts
(
256
,
)
# bbox2d
),
centerness_branch
=
(
256
,
),
loss_cls
=
dict
(
type
=
'mmdet.FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'mmdet.SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
),
loss_dir
=
dict
(
type
=
'mmdet.CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_centerness
=
dict
(
type
=
'mmdet.CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
use_depth_classifier
=
True
,
depth_branch
=
(
256
,
),
depth_range
=
(
0
,
50
),
depth_unit
=
10
,
division
=
'uniform'
,
depth_bins
=
6
,
pred_keypoints
=
True
,
weight_dim
=
1
,
loss_depth
=
dict
(
type
=
'UncertainSmoothL1Loss'
,
alpha
=
1.0
,
beta
=
3.0
,
loss_weight
=
1.0
),
loss_bbox2d
=
dict
(
type
=
'mmdet.SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
0.0
),
loss_consistency
=
dict
(
type
=
'mmdet.GIoULoss'
,
loss_weight
=
0.0
),
bbox_coder
=
dict
(
type
=
'PGDBBoxCoder'
,
base_depths
=
((
41.01
,
18.44
),
),
base_dims
=
(
(
4.73
,
1.77
,
2.08
),
(
0.91
,
1.74
,
0.84
),
(
1.81
,
1.77
,
0.84
),
),
code_size
=
7
)),
# set weight 1.0 for base 7 dims (offset, depth, size, rot)
# 0.2 for 16-dim keypoint offsets and 1.0 for 4-dim 2D distance targets
train_cfg
=
dict
(
code_weight
=
[
1.0
,
1.0
,
0.2
,
1.0
,
1.0
,
1.0
,
1.0
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
1.0
,
1.0
,
1.0
,
1.0
]),
test_cfg
=
dict
(
nms_pre
=
100
,
nms_thr
=
0.05
,
score_thr
=
0.001
,
max_per_img
=
20
))
# optimizer
optim_wrapper
=
dict
(
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.008
,
),
paramwise_cfg
=
dict
(
bias_lr_mult
=
2.
,
bias_decay_mult
=
0.
),
clip_grad
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
param_scheduler
=
[
dict
(
type
=
'LinearLR'
,
start_factor
=
1.0
/
3
,
by_epoch
=
False
,
begin
=
0
,
end
=
500
),
dict
(
type
=
'MultiStepLR'
,
begin
=
0
,
end
=
24
,
by_epoch
=
True
,
milestones
=
[
16
,
22
],
gamma
=
0.1
)
]
total_epochs
=
24
runner
=
dict
(
max_epochs
=
total_epochs
)
train_cfg
=
dict
(
type
=
'EpochBasedTrainLoop'
,
max_epochs
=
24
,
val_interval
=
24
)
val_cfg
=
dict
(
type
=
'ValLoop'
)
test_cfg
=
dict
(
type
=
'TestLoop'
)
configs/pgd/pgd_r101_fpn-head_dcn_16xb3_waymoD5-mv-mono3d.py
0 → 100644
View file @
d7067e44
_base_
=
[
'../_base_/datasets/waymoD5-mv-mono3d-3class.py'
,
'../_base_/models/pgd.py'
,
'../_base_/schedules/mmdet-schedule-1x.py'
,
'../_base_/default_runtime.py'
]
# model settings
model
=
dict
(
backbone
=
dict
(
type
=
'mmdet.ResNet'
,
depth
=
101
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
,
init_cfg
=
dict
(
type
=
'Pretrained'
,
checkpoint
=
'torchvision://resnet101'
),
dcn
=
dict
(
type
=
'DCNv2'
,
deform_groups
=
1
,
fallback_on_stride
=
False
),
stage_with_dcn
=
(
False
,
False
,
True
,
True
)),
neck
=
dict
(
num_outs
=
3
),
bbox_head
=
dict
(
num_classes
=
3
,
bbox_code_size
=
7
,
pred_attrs
=
False
,
pred_velo
=
False
,
pred_bbox2d
=
True
,
use_onlyreg_proj
=
True
,
strides
=
(
8
,
16
,
32
),
regress_ranges
=
((
-
1
,
128
),
(
128
,
256
),
(
256
,
1e8
)),
group_reg_dims
=
(
2
,
1
,
3
,
1
,
16
,
4
),
# offset, depth, size, rot, kpts, bbox2d
reg_branch
=
(
(
256
,
),
# offset
(
256
,
),
# depth
(
256
,
),
# size
(
256
,
),
# rot
(
256
,
),
# kpts
(
256
,
)
# bbox2d
),
centerness_branch
=
(
256
,
),
loss_cls
=
dict
(
type
=
'mmdet.FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'mmdet.SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
),
loss_dir
=
dict
(
type
=
'mmdet.CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_centerness
=
dict
(
type
=
'mmdet.CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
use_depth_classifier
=
True
,
depth_branch
=
(
256
,
),
depth_range
=
(
0
,
50
),
depth_unit
=
10
,
division
=
'uniform'
,
depth_bins
=
6
,
pred_keypoints
=
True
,
weight_dim
=
1
,
loss_depth
=
dict
(
type
=
'UncertainSmoothL1Loss'
,
alpha
=
1.0
,
beta
=
3.0
,
loss_weight
=
1.0
),
loss_bbox2d
=
dict
(
type
=
'mmdet.SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
0.0
),
loss_consistency
=
dict
(
type
=
'mmdet.GIoULoss'
,
loss_weight
=
0.0
),
bbox_coder
=
dict
(
type
=
'PGDBBoxCoder'
,
base_depths
=
((
41.01
,
18.44
),
),
base_dims
=
(
(
4.73
,
1.77
,
2.08
),
(
0.91
,
1.74
,
0.84
),
(
1.81
,
1.77
,
0.84
),
),
code_size
=
7
)),
# set weight 1.0 for base 7 dims (offset, depth, size, rot)
# 0.2 for 16-dim keypoint offsets and 1.0 for 4-dim 2D distance targets
train_cfg
=
dict
(
code_weight
=
[
1.0
,
1.0
,
0.2
,
1.0
,
1.0
,
1.0
,
1.0
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
0.2
,
1.0
,
1.0
,
1.0
,
1.0
]),
test_cfg
=
dict
(
nms_pre
=
100
,
nms_thr
=
0.05
,
score_thr
=
0.001
,
max_per_img
=
20
))
# optimizer
optim_wrapper
=
dict
(
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.008
,
),
paramwise_cfg
=
dict
(
bias_lr_mult
=
2.
,
bias_decay_mult
=
0.
),
clip_grad
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
param_scheduler
=
[
dict
(
type
=
'LinearLR'
,
start_factor
=
1.0
/
3
,
by_epoch
=
False
,
begin
=
0
,
end
=
500
),
dict
(
type
=
'MultiStepLR'
,
begin
=
0
,
end
=
24
,
by_epoch
=
True
,
milestones
=
[
16
,
22
],
gamma
=
0.1
)
]
total_epochs
=
24
runner
=
dict
(
max_epochs
=
total_epochs
)
train_cfg
=
dict
(
type
=
'EpochBasedTrainLoop'
,
max_epochs
=
24
,
val_interval
=
24
)
val_cfg
=
dict
(
type
=
'ValLoop'
)
test_cfg
=
dict
(
type
=
'TestLoop'
)
configs/point_rcnn/metafile.yml
View file @
d7067e44
...
@@ -16,7 +16,7 @@ Collections:
...
@@ -16,7 +16,7 @@ Collections:
Version
:
v1.0.0
Version
:
v1.0.0
Models
:
Models
:
-
Name
:
point-rcnn_8xb2_kitti-3d-3class
.py
-
Name
:
point-rcnn_8xb2_kitti-3d-3class
In Collection
:
PointRCNN
In Collection
:
PointRCNN
Config
:
configs/point_rcnn/point-rcnn_8xb2_kitti-3d-3class.py
Config
:
configs/point_rcnn/point-rcnn_8xb2_kitti-3d-3class.py
Metadata
:
Metadata
:
...
...
configs/point_rcnn/point-rcnn_8xb2_kitti-3d-3class.py
View file @
d7067e44
...
@@ -7,7 +7,7 @@ _base_ = [
...
@@ -7,7 +7,7 @@ _base_ = [
dataset_type
=
'KittiDataset'
dataset_type
=
'KittiDataset'
data_root
=
'data/kitti/'
data_root
=
'data/kitti/'
class_names
=
[
'Pedestrian'
,
'Cyclist'
,
'Car'
]
class_names
=
[
'Pedestrian'
,
'Cyclist'
,
'Car'
]
metainfo
=
dict
(
CLASSES
=
class_names
)
metainfo
=
dict
(
classes
=
class_names
)
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
input_modality
=
dict
(
use_lidar
=
True
,
use_camera
=
False
)
input_modality
=
dict
(
use_lidar
=
True
,
use_camera
=
False
)
...
...
configs/pointnet2/metafile.yml
View file @
d7067e44
...
@@ -15,7 +15,7 @@ Collections:
...
@@ -15,7 +15,7 @@ Collections:
Version
:
v0.14.0
Version
:
v0.14.0
Models
:
Models
:
-
Name
:
pointnet2_ssg_2xb16-cosine-200e_scannet-seg-xyz-only
.py
-
Name
:
pointnet2_ssg_2xb16-cosine-200e_scannet-seg-xyz-only
In Collection
:
PointNet++
In Collection
:
PointNet++
Config
:
configs/pointnet/pointnet2_ssg_2xb16-cosine-200e_scannet-seg-xyz-only.py
Config
:
configs/pointnet/pointnet2_ssg_2xb16-cosine-200e_scannet-seg-xyz-only.py
Metadata
:
Metadata
:
...
@@ -28,7 +28,7 @@ Models:
...
@@ -28,7 +28,7 @@ Models:
mIoU
:
53.91
mIoU
:
53.91
Weights
:
https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143628-4e341a48.pth
Weights
:
https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143628-4e341a48.pth
-
Name
:
pointnet2_ssg_2xb16-cosine-200e_scannet-seg
.py
-
Name
:
pointnet2_ssg_2xb16-cosine-200e_scannet-seg
In Collection
:
PointNet++
In Collection
:
PointNet++
Config
:
configs/pointnet/pointnet2_ssg_2xb16-cosine-200e_scannet-seg.py
Config
:
configs/pointnet/pointnet2_ssg_2xb16-cosine-200e_scannet-seg.py
Metadata
:
Metadata
:
...
@@ -41,7 +41,7 @@ Models:
...
@@ -41,7 +41,7 @@ Models:
mIoU
:
54.44
mIoU
:
54.44
Weights
:
https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth
Weights
:
https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth
-
Name
:
pointnet2_msg_2xb16-cosine-250e_scannet-seg-xyz-only
.py
-
Name
:
pointnet2_msg_2xb16-cosine-250e_scannet-seg-xyz-only
In Collection
:
PointNet++
In Collection
:
PointNet++
Config
:
configs/pointnet/pointnet2_msg_2xb16-cosine-250e_scannet-seg-xyz-only.py
Config
:
configs/pointnet/pointnet2_msg_2xb16-cosine-250e_scannet-seg-xyz-only.py
Metadata
:
Metadata
:
...
@@ -54,7 +54,7 @@ Models:
...
@@ -54,7 +54,7 @@ Models:
mIoU
:
54.26
mIoU
:
54.26
Weights
:
https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class_20210514_143838-b4a3cf89.pth
Weights
:
https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class_20210514_143838-b4a3cf89.pth
-
Name
:
pointnet2_msg_2xb16-cosine-250e_scannet-seg
.py
-
Name
:
pointnet2_msg_2xb16-cosine-250e_scannet-seg
In Collection
:
PointNet++
In Collection
:
PointNet++
Config
:
configs/pointnet/pointnet2_msg_2xb16-cosine-250e_scannet-seg.py
Config
:
configs/pointnet/pointnet2_msg_2xb16-cosine-250e_scannet-seg.py
Metadata
:
Metadata
:
...
@@ -67,7 +67,7 @@ Models:
...
@@ -67,7 +67,7 @@ Models:
mIoU
:
55.05
mIoU
:
55.05
Weights
:
https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class_20210514_144009-24477ab1.pth
Weights
:
https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class_20210514_144009-24477ab1.pth
-
Name
:
pointnet2_ssg_2xb16-cosine-50e_s3dis-seg
.py
-
Name
:
pointnet2_ssg_2xb16-cosine-50e_s3dis-seg
In Collection
:
PointNet++
In Collection
:
PointNet++
Config
:
configs/pointnet/pointnet2_ssg_2xb16-cosine-50e_s3dis-seg.py
Config
:
configs/pointnet/pointnet2_ssg_2xb16-cosine-50e_s3dis-seg.py
Metadata
:
Metadata
:
...
@@ -80,7 +80,7 @@ Models:
...
@@ -80,7 +80,7 @@ Models:
mIoU
:
56.93
mIoU
:
56.93
Weights
:
https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class_20210514_144205-995d0119.pth
Weights
:
https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class_20210514_144205-995d0119.pth
-
Name
:
pointnet2_msg_2xb16-cosine-80e_s3dis-seg
.py
-
Name
:
pointnet2_msg_2xb16-cosine-80e_s3dis-seg
In Collection
:
PointNet++
In Collection
:
PointNet++
Config
:
configs/pointnet/pointnet2_msg_2xb16-cosine-80e_s3dis-seg.py
Config
:
configs/pointnet/pointnet2_msg_2xb16-cosine-80e_s3dis-seg.py
Metadata
:
Metadata
:
...
...
configs/pointnet2/pointnet2_msg_2xb16-cosine-250e_scannet-seg-xyz-only.py
View file @
d7067e44
...
@@ -101,7 +101,6 @@ val_dataloader = test_dataloader
...
@@ -101,7 +101,6 @@ val_dataloader = test_dataloader
# runtime settings
# runtime settings
default_hooks
=
dict
(
checkpoint
=
dict
(
type
=
'CheckpointHook'
,
interval
=
5
))
default_hooks
=
dict
(
checkpoint
=
dict
(
type
=
'CheckpointHook'
,
interval
=
5
))
val_cfg
=
dict
(
interval
=
5
)
# PointNet2-MSG needs longer training time than PointNet2-SSG
# PointNet2-MSG needs longer training time than PointNet2-SSG
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
250
)
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
250
,
val_interval
=
5
)
configs/pointnet2/pointnet2_msg_2xb16-cosine-250e_scannet-seg.py
View file @
d7067e44
...
@@ -30,7 +30,6 @@ train_dataloader = dict(batch_size=16)
...
@@ -30,7 +30,6 @@ train_dataloader = dict(batch_size=16)
# runtime settings
# runtime settings
default_hooks
=
dict
(
checkpoint
=
dict
(
type
=
'CheckpointHook'
,
interval
=
5
))
default_hooks
=
dict
(
checkpoint
=
dict
(
type
=
'CheckpointHook'
,
interval
=
5
))
val_cfg
=
dict
(
interval
=
5
)
# PointNet2-MSG needs longer training time than PointNet2-SSG
# PointNet2-MSG needs longer training time than PointNet2-SSG
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
250
)
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
250
,
val_interval
=
5
)
configs/pointnet2/pointnet2_msg_2xb16-cosine-80e_s3dis-seg.py
View file @
d7067e44
...
@@ -21,7 +21,6 @@ train_dataloader = dict(batch_size=16)
...
@@ -21,7 +21,6 @@ train_dataloader = dict(batch_size=16)
# runtime settings
# runtime settings
default_hooks
=
dict
(
checkpoint
=
dict
(
type
=
'CheckpointHook'
,
interval
=
2
))
default_hooks
=
dict
(
checkpoint
=
dict
(
type
=
'CheckpointHook'
,
interval
=
2
))
val_cfg
=
dict
(
interval
=
2
)
# PointNet2-MSG needs longer training time than PointNet2-SSG
# PointNet2-MSG needs longer training time than PointNet2-SSG
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
80
)
train_cfg
=
dict
(
by_epoch
=
True
,
max_epochs
=
80
,
val_interval
=
2
)
configs/pointnet2/pointnet2_ssg_2xb16-cosine-200e_scannet-seg-xyz-only.py
View file @
d7067e44
...
@@ -101,4 +101,4 @@ val_dataloader = test_dataloader
...
@@ -101,4 +101,4 @@ val_dataloader = test_dataloader
# runtime settings
# runtime settings
default_hooks
=
dict
(
checkpoint
=
dict
(
type
=
'CheckpointHook'
,
interval
=
5
))
default_hooks
=
dict
(
checkpoint
=
dict
(
type
=
'CheckpointHook'
,
interval
=
5
))
val
_cfg
=
dict
(
interval
=
5
)
train
_cfg
=
dict
(
val_
interval
=
5
)
configs/pointnet2/pointnet2_ssg_2xb16-cosine-200e_scannet-seg.py
View file @
d7067e44
...
@@ -30,4 +30,4 @@ train_dataloader = dict(batch_size=16)
...
@@ -30,4 +30,4 @@ train_dataloader = dict(batch_size=16)
# runtime settings
# runtime settings
default_hooks
=
dict
(
checkpoint
=
dict
(
type
=
'CheckpointHook'
,
interval
=
5
))
default_hooks
=
dict
(
checkpoint
=
dict
(
type
=
'CheckpointHook'
,
interval
=
5
))
val
_cfg
=
dict
(
interval
=
5
)
train
_cfg
=
dict
(
val_
interval
=
5
)
configs/pointnet2/pointnet2_ssg_2xb16-cosine-50e_s3dis-seg.py
View file @
d7067e44
...
@@ -17,8 +17,8 @@ model = dict(
...
@@ -17,8 +17,8 @@ model = dict(
batch_size
=
24
))
batch_size
=
24
))
# data settings
# data settings
train_dataloader
=
dict
(
batch_size
=
6
)
train_dataloader
=
dict
(
batch_size
=
1
6
)
# runtime settings
# runtime settings
default_hooks
=
dict
(
checkpoint
=
dict
(
type
=
'CheckpointHook'
,
interval
=
2
)
,
)
default_hooks
=
dict
(
checkpoint
=
dict
(
type
=
'CheckpointHook'
,
interval
=
2
))
val
_cfg
=
dict
(
interval
=
2
)
train
_cfg
=
dict
(
val_
interval
=
2
)
Prev
1
2
3
4
5
6
7
8
9
…
18
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment