Unverified Commit d7067e44 authored by Wenwei Zhang's avatar Wenwei Zhang Committed by GitHub
Browse files

Bump version to v1.1.0rc2

Bump to v1.1.0rc2
parents 28fe73d2 fb0e57e5
...@@ -58,5 +58,4 @@ train_pipeline = [ ...@@ -58,5 +58,4 @@ train_pipeline = [
train_dataloader = dict(batch_size=8, dataset=dict(pipeline=train_pipeline)) train_dataloader = dict(batch_size=8, dataset=dict(pipeline=train_pipeline))
# runtime settings # runtime settings
val_cfg = dict(interval=1) train_cfg = dict(by_epoch=True, max_epochs=200, val_interval=1)
train_cfg = dict(by_epoch=True, max_epochs=200)
...@@ -56,4 +56,3 @@ train_pipeline = [ ...@@ -56,4 +56,3 @@ train_pipeline = [
] ]
train_dataloader = dict(batch_size=8, dataset=dict(pipeline=train_pipeline)) train_dataloader = dict(batch_size=8, dataset=dict(pipeline=train_pipeline))
val_cfg = dict(interval=1)
...@@ -22,8 +22,8 @@ We implement Part-A^2 and provide its results and checkpoints on KITTI dataset. ...@@ -22,8 +22,8 @@ We implement Part-A^2 and provide its results and checkpoints on KITTI dataset.
| Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | | Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :-------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | :-------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 4.1 | | 68.33 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017.log.json) | | [SECFPN](./parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 4.1 | | 68.33 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017.log.json) |
| [SECFPN](./PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py) | Car | cyclic 80e | 4.0 | | 79.08 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017-cb7ff621.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017.log.json) | | [SECFPN](./parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py) | Car | cyclic 80e | 4.0 | | 79.08 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017-cb7ff621.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017.log.json) |
## Citation ## Citation
......
...@@ -16,9 +16,9 @@ Collections: ...@@ -16,9 +16,9 @@ Collections:
Version: v0.5.0 Version: v0.5.0
Models: Models:
- Name: hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class - Name: parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class
In Collection: Part-A^2 In Collection: Part-A^2
Config: configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py Config: configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
Metadata: Metadata:
Training Memory (GB): 4.1 Training Memory (GB): 4.1
Results: Results:
...@@ -28,9 +28,9 @@ Models: ...@@ -28,9 +28,9 @@ Models:
mAP: 68.33 mAP: 68.33
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth
- Name: hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car - Name: parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car
In Collection: Part-A^2 In Collection: Part-A^2
Config: configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py Config: configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py
Metadata: Metadata:
Training Memory (GB): 4.0 Training Memory (GB): 4.0
Results: Results:
......
...@@ -84,7 +84,7 @@ train_dataloader = dict( ...@@ -84,7 +84,7 @@ train_dataloader = dict(
data_prefix=dict(pts='training/velodyne_reduced'), data_prefix=dict(pts='training/velodyne_reduced'),
pipeline=train_pipeline, pipeline=train_pipeline,
modality=input_modality, modality=input_modality,
metainfo=dict(CLASSES=class_names), metainfo=dict(classes=class_names),
box_type_3d='LiDAR', box_type_3d='LiDAR',
test_mode=False))) test_mode=False)))
test_dataloader = dict( test_dataloader = dict(
...@@ -100,7 +100,7 @@ test_dataloader = dict( ...@@ -100,7 +100,7 @@ test_dataloader = dict(
data_prefix=dict(pts='training/velodyne_reduced'), data_prefix=dict(pts='training/velodyne_reduced'),
pipeline=test_pipeline, pipeline=test_pipeline,
modality=input_modality, modality=input_modality,
metainfo=dict(CLASSES=class_names), metainfo=dict(classes=class_names),
box_type_3d='LiDAR', box_type_3d='LiDAR',
test_mode=True)) test_mode=True))
val_dataloader = dict( val_dataloader = dict(
...@@ -116,7 +116,7 @@ val_dataloader = dict( ...@@ -116,7 +116,7 @@ val_dataloader = dict(
data_prefix=dict(pts='training/velodyne_reduced'), data_prefix=dict(pts='training/velodyne_reduced'),
pipeline=eval_pipeline, pipeline=eval_pipeline,
modality=input_modality, modality=input_modality,
metainfo=dict(CLASSES=class_names), metainfo=dict(classes=class_names),
box_type_3d='LiDAR', box_type_3d='LiDAR',
test_mode=True)) test_mode=True))
val_evaluator = dict( val_evaluator = dict(
......
_base_ = './PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py' _base_ = './parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py'
point_cloud_range = [0, -40, -3, 70.4, 40, 1] # velodyne coordinates, x, y, z point_cloud_range = [0, -40, -3, 70.4, 40, 1] # velodyne coordinates, x, y, z
...@@ -124,19 +124,15 @@ test_pipeline = [ ...@@ -124,19 +124,15 @@ test_pipeline = [
dict(type='RandomFlip3D'), dict(type='RandomFlip3D'),
dict( dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range), type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict( ]),
type='DefaultFormatBundle3D', dict(type='Pack3DDetInputs', keys=['points'])
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
])
] ]
train_dataloader = dict( train_dataloader = dict(
dataset=dict( dataset=dict(
dataset=dict( dataset=dict(
pipeline=train_pipeline, metainfo=dict(CLASSES=class_names)))) pipeline=train_pipeline, metainfo=dict(classes=class_names))))
test_dataloader = dict( test_dataloader = dict(
dataset=dict(pipeline=test_pipeline, metainfo=dict(CLASSES=class_names))) dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names)))
val_dataloader = dict(dataset=dict(metainfo=dict(CLASSES=class_names))) val_dataloader = dict(dataset=dict(metainfo=dict(classes=class_names)))
find_unused_parameters = True find_unused_parameters = True
...@@ -16,7 +16,7 @@ Collections: ...@@ -16,7 +16,7 @@ Collections:
Version: v1.0.0 Version: v1.0.0
Models: Models:
- Name: pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d - Name: pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d
In Collection: PGD In Collection: PGD
Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d.py Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d.py
Metadata: Metadata:
...@@ -28,7 +28,7 @@ Models: ...@@ -28,7 +28,7 @@ Models:
mAP: 18.33 mAP: 18.33
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d_20211022_102608-8a97533b.pth Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d_20211022_102608-8a97533b.pth
- Name: pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d - Name: pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d
In Collection: PGD In Collection: PGD
Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d.py Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d.py
Metadata: Metadata:
...@@ -41,7 +41,7 @@ Models: ...@@ -41,7 +41,7 @@ Models:
NDS: 39.3 NDS: 39.3
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_20211116_195350-f4b5eec2.pth Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_20211116_195350-f4b5eec2.pth
- Name: pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune - Name: pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d_finetune
In Collection: PGD In Collection: PGD
Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d_finetune.py Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d_finetune.py
Metadata: Metadata:
...@@ -54,7 +54,7 @@ Models: ...@@ -54,7 +54,7 @@ Models:
NDS: 41.1 NDS: 41.1
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune_20211118_093245-fd419681.pth Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune_20211118_093245-fd419681.pth
- Name: pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d - Name: pgd_r101-caffe_fpn_head-gn_16xb2-2x_nus-mono3d
In Collection: PGD In Collection: PGD
Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-2x_nus-mono3d.py Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-2x_nus-mono3d.py
Metadata: Metadata:
...@@ -67,7 +67,7 @@ Models: ...@@ -67,7 +67,7 @@ Models:
NDS: 40.9 NDS: 40.9
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_20211112_125314-cb677266.pth Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_20211112_125314-cb677266.pth
- Name: pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune - Name: pgd_r101-caffe_fpn_head-gn_16xb2-2x_nus-mono3d_finetune
In Collection: PGD In Collection: PGD
Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-2x_nus-mono3d_finetune.py Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-2x_nus-mono3d_finetune.py
Metadata: Metadata:
......
...@@ -19,7 +19,8 @@ model = dict( ...@@ -19,7 +19,8 @@ model = dict(
(), # velo (), # velo
(256, ) # bbox2d (256, ) # bbox2d
), ),
loss_depth=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), loss_depth=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
bbox_coder=dict( bbox_coder=dict(
type='PGDBBoxCoder', type='PGDBBoxCoder',
base_depths=((31.99, 21.12), (37.15, 24.63), (39.69, 23.97), base_depths=((31.99, 21.12), (37.15, 24.63), (39.69, 23.97),
...@@ -43,8 +44,6 @@ class_names = [ ...@@ -43,8 +44,6 @@ class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
] ]
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFileMono3D'), dict(type='LoadImageFromFileMono3D'),
dict( dict(
...@@ -57,11 +56,8 @@ train_pipeline = [ ...@@ -57,11 +56,8 @@ train_pipeline = [
with_bbox_depth=True), with_bbox_depth=True),
dict(type='Resize', img_scale=(1600, 900), keep_ratio=True), dict(type='Resize', img_scale=(1600, 900), keep_ratio=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict( dict(
type='Collect3D', type='Pack3DDetInputs',
keys=[ keys=[
'img', 'gt_bboxes', 'gt_bboxes_labels', 'attr_labels', 'img', 'gt_bboxes', 'gt_bboxes_labels', 'attr_labels',
'gt_bboxes_3d', 'gt_labels_3d', 'centers2d', 'depths' 'gt_bboxes_3d', 'gt_labels_3d', 'centers2d', 'depths'
...@@ -75,14 +71,8 @@ test_pipeline = [ ...@@ -75,14 +71,8 @@ test_pipeline = [
flip=False, flip=False,
transforms=[ transforms=[
dict(type='RandomFlip3D'), dict(type='RandomFlip3D'),
dict(type='Normalize', **img_norm_cfg), ]),
dict(type='Pad', size_divisor=32), dict(type='Pack3DDetInputs', keys=['img']),
dict(
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['img']),
])
] ]
data = dict( data = dict(
samples_per_gpu=2, samples_per_gpu=2,
......
_base_ = [
'../_base_/datasets/waymoD5-fov-mono3d-3class.py',
'../_base_/models/pgd.py', '../_base_/schedules/mmdet-schedule-1x.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(
backbone=dict(
type='mmdet.ResNet',
depth=101,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101'),
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, False, True, True)),
neck=dict(num_outs=3),
bbox_head=dict(
num_classes=3,
bbox_code_size=7,
pred_attrs=False,
pred_velo=False,
pred_bbox2d=True,
use_onlyreg_proj=True,
strides=(8, 16, 32),
regress_ranges=((-1, 128), (128, 256), (256, 1e8)),
group_reg_dims=(2, 1, 3, 1, 16,
4), # offset, depth, size, rot, kpts, bbox2d
reg_branch=(
(256, ), # offset
(256, ), # depth
(256, ), # size
(256, ), # rot
(256, ), # kpts
(256, ) # bbox2d
),
centerness_branch=(256, ),
loss_cls=dict(
type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_dir=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_centerness=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
use_depth_classifier=True,
depth_branch=(256, ),
depth_range=(0, 50),
depth_unit=10,
division='uniform',
depth_bins=6,
pred_keypoints=True,
weight_dim=1,
loss_depth=dict(
type='UncertainSmoothL1Loss', alpha=1.0, beta=3.0,
loss_weight=1.0),
loss_bbox2d=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.0),
loss_consistency=dict(type='mmdet.GIoULoss', loss_weight=0.0),
bbox_coder=dict(
type='PGDBBoxCoder',
base_depths=((41.01, 18.44), ),
base_dims=(
(4.73, 1.77, 2.08),
(0.91, 1.74, 0.84),
(1.81, 1.77, 0.84),
),
code_size=7)),
# set weight 1.0 for base 7 dims (offset, depth, size, rot)
# 0.2 for 16-dim keypoint offsets and 1.0 for 4-dim 2D distance targets
train_cfg=dict(code_weight=[
1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0
]),
test_cfg=dict(nms_pre=100, nms_thr=0.05, score_thr=0.001, max_per_img=20))
# optimizer
optim_wrapper = dict(
optimizer=dict(
type='SGD',
lr=0.008,
),
paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.),
clip_grad=dict(max_norm=35, norm_type=2))
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0 / 3,
by_epoch=False,
begin=0,
end=500),
dict(
type='MultiStepLR',
begin=0,
end=24,
by_epoch=True,
milestones=[16, 22],
gamma=0.1)
]
total_epochs = 24
runner = dict(max_epochs=total_epochs)
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=24, val_interval=24)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
_base_ = [
'../_base_/datasets/waymoD5-mono3d-3class.py', '../_base_/models/pgd.py',
'../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py'
]
# model settings
model = dict(
backbone=dict(
type='mmdet.ResNet',
depth=101,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101'),
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, False, True, True)),
neck=dict(num_outs=3),
bbox_head=dict(
num_classes=3,
bbox_code_size=7,
pred_attrs=False,
pred_velo=False,
pred_bbox2d=True,
use_onlyreg_proj=True,
strides=(8, 16, 32),
regress_ranges=((-1, 128), (128, 256), (256, 1e8)),
group_reg_dims=(2, 1, 3, 1, 16,
4), # offset, depth, size, rot, kpts, bbox2d
reg_branch=(
(256, ), # offset
(256, ), # depth
(256, ), # size
(256, ), # rot
(256, ), # kpts
(256, ) # bbox2d
),
centerness_branch=(256, ),
loss_cls=dict(
type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_dir=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_centerness=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
use_depth_classifier=True,
depth_branch=(256, ),
depth_range=(0, 50),
depth_unit=10,
division='uniform',
depth_bins=6,
pred_keypoints=True,
weight_dim=1,
loss_depth=dict(
type='UncertainSmoothL1Loss', alpha=1.0, beta=3.0,
loss_weight=1.0),
loss_bbox2d=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.0),
loss_consistency=dict(type='mmdet.GIoULoss', loss_weight=0.0),
bbox_coder=dict(
type='PGDBBoxCoder',
base_depths=((41.01, 18.44), ),
base_dims=(
(4.73, 1.77, 2.08),
(0.91, 1.74, 0.84),
(1.81, 1.77, 0.84),
),
code_size=7)),
# set weight 1.0 for base 7 dims (offset, depth, size, rot)
# 0.2 for 16-dim keypoint offsets and 1.0 for 4-dim 2D distance targets
train_cfg=dict(code_weight=[
1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0
]),
test_cfg=dict(nms_pre=100, nms_thr=0.05, score_thr=0.001, max_per_img=20))
# optimizer
optim_wrapper = dict(
optimizer=dict(
type='SGD',
lr=0.008,
),
paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.),
clip_grad=dict(max_norm=35, norm_type=2))
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0 / 3,
by_epoch=False,
begin=0,
end=500),
dict(
type='MultiStepLR',
begin=0,
end=24,
by_epoch=True,
milestones=[16, 22],
gamma=0.1)
]
total_epochs = 24
runner = dict(max_epochs=total_epochs)
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=24, val_interval=24)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
_base_ = [
'../_base_/datasets/waymoD5-mv-mono3d-3class.py',
'../_base_/models/pgd.py', '../_base_/schedules/mmdet-schedule-1x.py',
'../_base_/default_runtime.py'
]
# model settings
model = dict(
backbone=dict(
type='mmdet.ResNet',
depth=101,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101'),
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, False, True, True)),
neck=dict(num_outs=3),
bbox_head=dict(
num_classes=3,
bbox_code_size=7,
pred_attrs=False,
pred_velo=False,
pred_bbox2d=True,
use_onlyreg_proj=True,
strides=(8, 16, 32),
regress_ranges=((-1, 128), (128, 256), (256, 1e8)),
group_reg_dims=(2, 1, 3, 1, 16,
4), # offset, depth, size, rot, kpts, bbox2d
reg_branch=(
(256, ), # offset
(256, ), # depth
(256, ), # size
(256, ), # rot
(256, ), # kpts
(256, ) # bbox2d
),
centerness_branch=(256, ),
loss_cls=dict(
type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_dir=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_centerness=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
use_depth_classifier=True,
depth_branch=(256, ),
depth_range=(0, 50),
depth_unit=10,
division='uniform',
depth_bins=6,
pred_keypoints=True,
weight_dim=1,
loss_depth=dict(
type='UncertainSmoothL1Loss', alpha=1.0, beta=3.0,
loss_weight=1.0),
loss_bbox2d=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.0),
loss_consistency=dict(type='mmdet.GIoULoss', loss_weight=0.0),
bbox_coder=dict(
type='PGDBBoxCoder',
base_depths=((41.01, 18.44), ),
base_dims=(
(4.73, 1.77, 2.08),
(0.91, 1.74, 0.84),
(1.81, 1.77, 0.84),
),
code_size=7)),
# set weight 1.0 for base 7 dims (offset, depth, size, rot)
# 0.2 for 16-dim keypoint offsets and 1.0 for 4-dim 2D distance targets
train_cfg=dict(code_weight=[
1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0
]),
test_cfg=dict(nms_pre=100, nms_thr=0.05, score_thr=0.001, max_per_img=20))
# optimizer
optim_wrapper = dict(
optimizer=dict(
type='SGD',
lr=0.008,
),
paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.),
clip_grad=dict(max_norm=35, norm_type=2))
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0 / 3,
by_epoch=False,
begin=0,
end=500),
dict(
type='MultiStepLR',
begin=0,
end=24,
by_epoch=True,
milestones=[16, 22],
gamma=0.1)
]
total_epochs = 24
runner = dict(max_epochs=total_epochs)
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=24, val_interval=24)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
...@@ -16,7 +16,7 @@ Collections: ...@@ -16,7 +16,7 @@ Collections:
Version: v1.0.0 Version: v1.0.0
Models: Models:
- Name: point-rcnn_8xb2_kitti-3d-3class.py - Name: point-rcnn_8xb2_kitti-3d-3class
In Collection: PointRCNN In Collection: PointRCNN
Config: configs/point_rcnn/point-rcnn_8xb2_kitti-3d-3class.py Config: configs/point_rcnn/point-rcnn_8xb2_kitti-3d-3class.py
Metadata: Metadata:
......
...@@ -7,7 +7,7 @@ _base_ = [ ...@@ -7,7 +7,7 @@ _base_ = [
dataset_type = 'KittiDataset' dataset_type = 'KittiDataset'
data_root = 'data/kitti/' data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car'] class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
point_cloud_range = [0, -40, -3, 70.4, 40, 1] point_cloud_range = [0, -40, -3, 70.4, 40, 1]
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
......
...@@ -15,7 +15,7 @@ Collections: ...@@ -15,7 +15,7 @@ Collections:
Version: v0.14.0 Version: v0.14.0
Models: Models:
- Name: pointnet2_ssg_2xb16-cosine-200e_scannet-seg-xyz-only.py - Name: pointnet2_ssg_2xb16-cosine-200e_scannet-seg-xyz-only
In Collection: PointNet++ In Collection: PointNet++
Config: configs/pointnet/pointnet2_ssg_2xb16-cosine-200e_scannet-seg-xyz-only.py Config: configs/pointnet/pointnet2_ssg_2xb16-cosine-200e_scannet-seg-xyz-only.py
Metadata: Metadata:
...@@ -28,7 +28,7 @@ Models: ...@@ -28,7 +28,7 @@ Models:
mIoU: 53.91 mIoU: 53.91
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143628-4e341a48.pth Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143628-4e341a48.pth
- Name: pointnet2_ssg_2xb16-cosine-200e_scannet-seg.py - Name: pointnet2_ssg_2xb16-cosine-200e_scannet-seg
In Collection: PointNet++ In Collection: PointNet++
Config: configs/pointnet/pointnet2_ssg_2xb16-cosine-200e_scannet-seg.py Config: configs/pointnet/pointnet2_ssg_2xb16-cosine-200e_scannet-seg.py
Metadata: Metadata:
...@@ -41,7 +41,7 @@ Models: ...@@ -41,7 +41,7 @@ Models:
mIoU: 54.44 mIoU: 54.44
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth
- Name: pointnet2_msg_2xb16-cosine-250e_scannet-seg-xyz-only.py - Name: pointnet2_msg_2xb16-cosine-250e_scannet-seg-xyz-only
In Collection: PointNet++ In Collection: PointNet++
Config: configs/pointnet/pointnet2_msg_2xb16-cosine-250e_scannet-seg-xyz-only.py Config: configs/pointnet/pointnet2_msg_2xb16-cosine-250e_scannet-seg-xyz-only.py
Metadata: Metadata:
...@@ -54,7 +54,7 @@ Models: ...@@ -54,7 +54,7 @@ Models:
mIoU: 54.26 mIoU: 54.26
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class_20210514_143838-b4a3cf89.pth Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class_20210514_143838-b4a3cf89.pth
- Name: pointnet2_msg_2xb16-cosine-250e_scannet-seg.py - Name: pointnet2_msg_2xb16-cosine-250e_scannet-seg
In Collection: PointNet++ In Collection: PointNet++
Config: configs/pointnet/pointnet2_msg_2xb16-cosine-250e_scannet-seg.py Config: configs/pointnet/pointnet2_msg_2xb16-cosine-250e_scannet-seg.py
Metadata: Metadata:
...@@ -67,7 +67,7 @@ Models: ...@@ -67,7 +67,7 @@ Models:
mIoU: 55.05 mIoU: 55.05
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class_20210514_144009-24477ab1.pth Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class_20210514_144009-24477ab1.pth
- Name: pointnet2_ssg_2xb16-cosine-50e_s3dis-seg.py - Name: pointnet2_ssg_2xb16-cosine-50e_s3dis-seg
In Collection: PointNet++ In Collection: PointNet++
Config: configs/pointnet/pointnet2_ssg_2xb16-cosine-50e_s3dis-seg.py Config: configs/pointnet/pointnet2_ssg_2xb16-cosine-50e_s3dis-seg.py
Metadata: Metadata:
...@@ -80,7 +80,7 @@ Models: ...@@ -80,7 +80,7 @@ Models:
mIoU: 56.93 mIoU: 56.93
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class_20210514_144205-995d0119.pth Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class_20210514_144205-995d0119.pth
- Name: pointnet2_msg_2xb16-cosine-80e_s3dis-seg.py - Name: pointnet2_msg_2xb16-cosine-80e_s3dis-seg
In Collection: PointNet++ In Collection: PointNet++
Config: configs/pointnet/pointnet2_msg_2xb16-cosine-80e_s3dis-seg.py Config: configs/pointnet/pointnet2_msg_2xb16-cosine-80e_s3dis-seg.py
Metadata: Metadata:
......
...@@ -101,7 +101,6 @@ val_dataloader = test_dataloader ...@@ -101,7 +101,6 @@ val_dataloader = test_dataloader
# runtime settings # runtime settings
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5)) default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5))
val_cfg = dict(interval=5)
# PointNet2-MSG needs longer training time than PointNet2-SSG # PointNet2-MSG needs longer training time than PointNet2-SSG
train_cfg = dict(by_epoch=True, max_epochs=250) train_cfg = dict(by_epoch=True, max_epochs=250, val_interval=5)
...@@ -30,7 +30,6 @@ train_dataloader = dict(batch_size=16) ...@@ -30,7 +30,6 @@ train_dataloader = dict(batch_size=16)
# runtime settings # runtime settings
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5)) default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5))
val_cfg = dict(interval=5)
# PointNet2-MSG needs longer training time than PointNet2-SSG # PointNet2-MSG needs longer training time than PointNet2-SSG
train_cfg = dict(by_epoch=True, max_epochs=250) train_cfg = dict(by_epoch=True, max_epochs=250, val_interval=5)
...@@ -21,7 +21,6 @@ train_dataloader = dict(batch_size=16) ...@@ -21,7 +21,6 @@ train_dataloader = dict(batch_size=16)
# runtime settings # runtime settings
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=2)) default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=2))
val_cfg = dict(interval=2)
# PointNet2-MSG needs longer training time than PointNet2-SSG # PointNet2-MSG needs longer training time than PointNet2-SSG
train_cfg = dict(by_epoch=True, max_epochs=80) train_cfg = dict(by_epoch=True, max_epochs=80, val_interval=2)
...@@ -101,4 +101,4 @@ val_dataloader = test_dataloader ...@@ -101,4 +101,4 @@ val_dataloader = test_dataloader
# runtime settings # runtime settings
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5)) default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5))
val_cfg = dict(interval=5) train_cfg = dict(val_interval=5)
...@@ -30,4 +30,4 @@ train_dataloader = dict(batch_size=16) ...@@ -30,4 +30,4 @@ train_dataloader = dict(batch_size=16)
# runtime settings # runtime settings
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5)) default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5))
val_cfg = dict(interval=5) train_cfg = dict(val_interval=5)
...@@ -17,8 +17,8 @@ model = dict( ...@@ -17,8 +17,8 @@ model = dict(
batch_size=24)) batch_size=24))
# data settings # data settings
train_dataloader = dict(batch_size=6) train_dataloader = dict(batch_size=16)
# runtime settings # runtime settings
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=2), ) default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=2))
val_cfg = dict(interval=2) train_cfg = dict(val_interval=2)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment