Unverified Commit d7067e44 authored by Wenwei Zhang's avatar Wenwei Zhang Committed by GitHub
Browse files

Bump version to v1.1.0rc2

Bump to v1.1.0rc2
parents 28fe73d2 fb0e57e5
...@@ -3,12 +3,12 @@ dataset_type = 'ScanNetDataset' ...@@ -3,12 +3,12 @@ dataset_type = 'ScanNetDataset'
data_root = 'data/scannet/' data_root = 'data/scannet/'
metainfo = dict( metainfo = dict(
CLASSES=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', classes=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'bookshelf', 'picture', 'counter', 'desk', 'curtain',
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
'garbagebin')) 'garbagebin'))
file_client_args = dict(backend='disk') # file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients. # Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient # See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details. # for more details.
......
...@@ -3,7 +3,7 @@ class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table', ...@@ -3,7 +3,7 @@ class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink',
'bathtub', 'otherfurniture') 'bathtub', 'otherfurniture')
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
dataset_type = 'ScanNetSegDataset' dataset_type = 'ScanNetSegDataset'
data_root = 'data/scannet/' data_root = 'data/scannet/'
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
......
...@@ -3,7 +3,7 @@ data_root = 'data/sunrgbd/' ...@@ -3,7 +3,7 @@ data_root = 'data/sunrgbd/'
class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
'night_stand', 'bookshelf', 'bathtub') 'night_stand', 'bookshelf', 'bathtub')
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
file_client_args = dict(backend='disk') file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients. # Uncomment the following if use ceph or other file clients.
......
...@@ -16,7 +16,7 @@ file_client_args = dict(backend='disk') ...@@ -16,7 +16,7 @@ file_client_args = dict(backend='disk')
# }) # })
class_names = ['Car', 'Pedestrian', 'Cyclist'] class_names = ['Car', 'Pedestrian', 'Cyclist']
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4] point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4]
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
...@@ -151,7 +151,8 @@ val_evaluator = dict( ...@@ -151,7 +151,8 @@ val_evaluator = dict(
ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl', ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl',
waymo_bin_file='./data/waymo/waymo_format/gt.bin', waymo_bin_file='./data/waymo/waymo_format/gt.bin',
data_root='./data/waymo/waymo_format', data_root='./data/waymo/waymo_format',
file_client_args=file_client_args) file_client_args=file_client_args,
convert_kitti_format=False)
test_evaluator = val_evaluator test_evaluator = val_evaluator
vis_backends = [dict(type='LocalVisBackend')] vis_backends = [dict(type='LocalVisBackend')]
......
...@@ -11,7 +11,7 @@ file_client_args = dict(backend='disk') ...@@ -11,7 +11,7 @@ file_client_args = dict(backend='disk')
# backend='petrel', path_mapping=dict(data='s3://waymo_data/')) # backend='petrel', path_mapping=dict(data='s3://waymo_data/'))
class_names = ['Car'] class_names = ['Car']
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4] point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4]
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
...@@ -135,7 +135,8 @@ val_evaluator = dict( ...@@ -135,7 +135,8 @@ val_evaluator = dict(
type='WaymoMetric', type='WaymoMetric',
ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl', ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl',
waymo_bin_file='./data/waymo/waymo_format/gt.bin', waymo_bin_file='./data/waymo/waymo_format/gt.bin',
data_root='./data/waymo/waymo_format') data_root='./data/waymo/waymo_format',
convert_kitti_format=False)
test_evaluator = val_evaluator test_evaluator = val_evaluator
vis_backends = [dict(type='LocalVisBackend')] vis_backends = [dict(type='LocalVisBackend')]
......
# dataset settings
# D3 in the config name means the whole dataset is divided into 3 folds
# We only use one fold for efficient experiments
dataset_type = 'WaymoDataset'
data_root = 'data/waymo/kitti_format/'
class_names = ['Car', 'Pedestrian', 'Cyclist']
input_modality = dict(use_lidar=False, use_camera=True)
file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
train_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='LoadAnnotations3D',
with_bbox=True,
with_label=True,
with_attr_label=False,
with_bbox_3d=True,
with_label_3d=True,
with_bbox_depth=True),
# base shape (1248, 832), scale (0.95, 1.05)
dict(
type='RandomResize3D',
scale=(1284, 832),
ratio_range=(0.95, 1.05),
keep_ratio=True,
),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='Pack3DDetInputs',
keys=[
'img', 'gt_bboxes', 'gt_bboxes_labels', 'gt_bboxes_3d',
'gt_labels_3d', 'centers_2d', 'depths'
]),
]
test_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='RandomResize3D',
scale=(1248, 832),
ratio_range=(1., 1.),
keep_ratio=True),
dict(type='Pack3DDetInputs', keys=['img']),
]
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='RandomResize3D',
scale=(1248, 832),
ratio_range=(1., 1.),
keep_ratio=True),
dict(type='Pack3DDetInputs', keys=['img']),
]
metainfo = dict(CLASSES=class_names)
train_dataloader = dict(
batch_size=3,
num_workers=3,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='waymo_infos_train.pkl',
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_RIGHT='training/image_1',
CAM_FRONT_LEFT='training/image_2',
CAM_SIDE_RIGHT='training/image_3',
CAM_SIDE_LEFT='training/image_4'),
pipeline=train_pipeline,
modality=input_modality,
test_mode=False,
metainfo=metainfo,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='fov_image_based',
# load one frame every three frames
load_interval=5))
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_RIGHT='training/image_1',
CAM_FRONT_LEFT='training/image_2',
CAM_SIDE_RIGHT='training/image_3',
CAM_SIDE_LEFT='training/image_4'),
ann_file='waymo_infos_val.pkl',
pipeline=eval_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='fov_image_based',
))
test_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(
pts='training/velodyne',
CAM_FRONT='training/image_0',
CAM_FRONT_RIGHT='training/image_1',
CAM_FRONT_LEFT='training/image_2',
CAM_SIDE_RIGHT='training/image_3',
CAM_SIDE_LEFT='training/image_4'),
ann_file='waymo_infos_val.pkl',
pipeline=eval_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera',
load_type='fov_image_based',
))
val_evaluator = dict(
type='WaymoMetric',
ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl',
waymo_bin_file='./data/waymo/waymo_format/fov_gt.bin',
data_root='./data/waymo/waymo_format',
metric='LET_mAP',
load_type='fov_image_based',
)
test_evaluator = val_evaluator
...@@ -56,7 +56,7 @@ eval_pipeline = [ ...@@ -56,7 +56,7 @@ eval_pipeline = [
dict(type='Pack3DDetInputs', keys=['img']), dict(type='Pack3DDetInputs', keys=['img']),
] ]
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
train_dataloader = dict( train_dataloader = dict(
batch_size=3, batch_size=3,
...@@ -81,7 +81,7 @@ train_dataloader = dict( ...@@ -81,7 +81,7 @@ train_dataloader = dict(
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset. # and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera', box_type_3d='Camera',
task='mono3d', load_type='mv_image_based',
# load one frame every three frames # load one frame every three frames
load_interval=5)) load_interval=5))
...@@ -109,7 +109,7 @@ val_dataloader = dict( ...@@ -109,7 +109,7 @@ val_dataloader = dict(
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset. # and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera', box_type_3d='Camera',
task='mono3d', load_type='mv_image_based',
)) ))
test_dataloader = dict( test_dataloader = dict(
...@@ -136,7 +136,7 @@ test_dataloader = dict( ...@@ -136,7 +136,7 @@ test_dataloader = dict(
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset. # and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='Camera', box_type_3d='Camera',
task='mono3d', load_type='mv_image_based',
)) ))
val_evaluator = dict( val_evaluator = dict(
...@@ -145,5 +145,6 @@ val_evaluator = dict( ...@@ -145,5 +145,6 @@ val_evaluator = dict(
waymo_bin_file='./data/waymo/waymo_format/cam_gt.bin', waymo_bin_file='./data/waymo/waymo_format/cam_gt.bin',
data_root='./data/waymo/waymo_format', data_root='./data/waymo/waymo_format',
metric='LET_mAP', metric='LET_mAP',
task='mono3d') load_type='mv_image_based',
)
test_evaluator = val_evaluator test_evaluator = val_evaluator
...@@ -62,7 +62,7 @@ eval_pipeline = [ ...@@ -62,7 +62,7 @@ eval_pipeline = [
dict(type='MultiViewWrapper', transforms=test_transforms), dict(type='MultiViewWrapper', transforms=test_transforms),
dict(type='Pack3DDetInputs', keys=['img']) dict(type='Pack3DDetInputs', keys=['img'])
] ]
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
train_dataloader = dict( train_dataloader = dict(
batch_size=2, batch_size=2,
......
...@@ -2,6 +2,7 @@ ...@@ -2,6 +2,7 @@
model = dict( model = dict(
type='CascadeRCNN', type='CascadeRCNN',
pretrained='torchvision://resnet50', pretrained='torchvision://resnet50',
_scope_='mmdet',
backbone=dict( backbone=dict(
type='ResNet', type='ResNet',
depth=50, depth=50,
......
model = dict(
type='MinkSingleStage3DDetector',
data_preprocessor=dict(type='Det3DDataPreprocessor'),
backbone=dict(type='MinkResNet', in_channels=3, depth=34),
bbox_head=dict(
type='FCAF3DHead',
in_channels=(64, 128, 256, 512),
out_channels=128,
voxel_size=.01,
pts_prune_threshold=100000,
pts_assign_threshold=27,
pts_center_threshold=18,
num_classes=18,
num_reg_outs=6,
center_loss=dict(type='mmdet.CrossEntropyLoss', use_sigmoid=True),
bbox_loss=dict(type='AxisAlignedIoULoss'),
cls_loss=dict(type='mmdet.FocalLoss'),
),
train_cfg=dict(),
test_cfg=dict(nms_pre=1000, iou_thr=.5, score_thr=.01))
...@@ -63,9 +63,9 @@ model = dict( ...@@ -63,9 +63,9 @@ model = dict(
# model training and testing settings # model training and testing settings
train_cfg=dict( train_cfg=dict(
_scope_='mmdet',
img_rpn=dict( img_rpn=dict(
assigner=dict( assigner=dict(
_scope_='mmdet',
type='MaxIoUAssigner', type='MaxIoUAssigner',
pos_iou_thr=0.7, pos_iou_thr=0.7,
neg_iou_thr=0.3, neg_iou_thr=0.3,
...@@ -73,7 +73,7 @@ model = dict( ...@@ -73,7 +73,7 @@ model = dict(
match_low_quality=True, match_low_quality=True,
ignore_iof_thr=-1), ignore_iof_thr=-1),
sampler=dict( sampler=dict(
type='mmdet.RandomSampler', type='RandomSampler',
num=256, num=256,
pos_fraction=0.5, pos_fraction=0.5,
neg_pos_ub=-1, neg_pos_ub=-1,
...@@ -90,7 +90,6 @@ model = dict( ...@@ -90,7 +90,6 @@ model = dict(
min_bbox_size=0), min_bbox_size=0),
img_rcnn=dict( img_rcnn=dict(
assigner=dict( assigner=dict(
_scope_='mmdet',
type='MaxIoUAssigner', type='MaxIoUAssigner',
pos_iou_thr=0.5, pos_iou_thr=0.5,
neg_iou_thr=0.5, neg_iou_thr=0.5,
...@@ -98,7 +97,7 @@ model = dict( ...@@ -98,7 +97,7 @@ model = dict(
match_low_quality=False, match_low_quality=False,
ignore_iof_thr=-1), ignore_iof_thr=-1),
sampler=dict( sampler=dict(
type='mmdet.RandomSampler', type='RandomSampler',
num=512, num=512,
pos_fraction=0.25, pos_fraction=0.25,
neg_pos_ub=-1, neg_pos_ub=-1,
......
...@@ -2,6 +2,7 @@ ...@@ -2,6 +2,7 @@
model = dict( model = dict(
type='MaskRCNN', type='MaskRCNN',
pretrained='torchvision://resnet50', pretrained='torchvision://resnet50',
_scope_='mmdet',
backbone=dict( backbone=dict(
type='ResNet', type='ResNet',
depth=50, depth=50,
......
...@@ -16,8 +16,8 @@ param_scheduler = [ ...@@ -16,8 +16,8 @@ param_scheduler = [
] ]
# runtime settings # runtime settings
train_cfg = dict(by_epoch=True, max_epochs=100) train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1)
val_cfg = dict(interval=1) val_cfg = dict()
test_cfg = dict() test_cfg = dict()
# Default setting for scaling LR automatically # Default setting for scaling LR automatically
......
...@@ -16,8 +16,8 @@ param_scheduler = [ ...@@ -16,8 +16,8 @@ param_scheduler = [
] ]
# runtime settings # runtime settings
train_cfg = dict(by_epoch=True, max_epochs=150) train_cfg = dict(by_epoch=True, max_epochs=150, val_interval=1)
val_cfg = dict(interval=1) val_cfg = dict()
test_cfg = dict() test_cfg = dict()
# Default setting for scaling LR automatically # Default setting for scaling LR automatically
......
...@@ -16,8 +16,8 @@ param_scheduler = [ ...@@ -16,8 +16,8 @@ param_scheduler = [
] ]
# runtime settings # runtime settings
train_cfg = dict(by_epoch=True, max_epochs=200) train_cfg = dict(by_epoch=True, max_epochs=200, val_interval=1)
val_cfg = dict(interval=1) val_cfg = dict()
test_cfg = dict() test_cfg = dict()
# Default setting for scaling LR automatically # Default setting for scaling LR automatically
......
...@@ -16,8 +16,8 @@ param_scheduler = [ ...@@ -16,8 +16,8 @@ param_scheduler = [
] ]
# runtime settings # runtime settings
train_cfg = dict(by_epoch=True, max_epochs=50) train_cfg = dict(by_epoch=True, max_epochs=50, val_interval=1)
val_cfg = dict(interval=1) val_cfg = dict()
test_cfg = dict() test_cfg = dict()
# Default setting for scaling LR automatically # Default setting for scaling LR automatically
......
...@@ -210,7 +210,7 @@ model = dict( ...@@ -210,7 +210,7 @@ model = dict(
dataset_type = 'KittiDataset' dataset_type = 'KittiDataset'
data_root = 'data/kitti/' data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car'] class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict( db_sampler = dict(
data_root=data_root, data_root=data_root,
......
...@@ -81,7 +81,7 @@ model = dict( ...@@ -81,7 +81,7 @@ model = dict(
dataset_type = 'KittiDataset' dataset_type = 'KittiDataset'
data_root = 'data/kitti/' data_root = 'data/kitti/'
class_names = ['Car'] class_names = ['Car']
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict( db_sampler = dict(
data_root=data_root, data_root=data_root,
......
...@@ -107,7 +107,7 @@ model = dict( ...@@ -107,7 +107,7 @@ model = dict(
dataset_type = 'KittiDataset' dataset_type = 'KittiDataset'
data_root = 'data/kitti/' data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car'] class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict( db_sampler = dict(
......
...@@ -99,7 +99,7 @@ model = dict( ...@@ -99,7 +99,7 @@ model = dict(
dataset_type = 'KittiDataset' dataset_type = 'KittiDataset'
data_root = 'data/kitti/' data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car'] class_names = ['Pedestrian', 'Cyclist', 'Car']
metainfo = dict(CLASSES=class_names) metainfo = dict(classes=class_names)
input_modality = dict(use_lidar=True, use_camera=False) input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict( db_sampler = dict(
data_root=data_root, data_root=data_root,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment