Commit d1aac35d authored by zhangwenwei's avatar zhangwenwei
Browse files

Initial commit

parents
#include <torch/serialize/tensor.h>
#include <torch/extension.h>
#include <vector>
#include <cuda.h>
#include <cuda_runtime_api.h>
#define CHECK_CUDA(x) AT_CHECK(x.type().is_cuda(), #x, " must be a CUDAtensor ")
#define CHECK_CONTIGUOUS(x) AT_CHECK(x.is_contiguous(), #x, " must be contiguous ")
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
#define CHECK_ERROR(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
const int THREADS_PER_BLOCK_NMS = sizeof(unsigned long long) * 8;
void boxesoverlapLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_overlap);
void boxesioubevLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_iou);
void nmsLauncher(const float *boxes, unsigned long long * mask, int boxes_num, float nms_overlap_thresh);
void nmsNormalLauncher(const float *boxes, unsigned long long * mask, int boxes_num, float nms_overlap_thresh);
int boxes_overlap_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_overlap){
// params boxes_a: (N, 5) [x1, y1, x2, y2, ry]
// params boxes_b: (M, 5)
// params ans_overlap: (N, M)
CHECK_INPUT(boxes_a);
CHECK_INPUT(boxes_b);
CHECK_INPUT(ans_overlap);
int num_a = boxes_a.size(0);
int num_b = boxes_b.size(0);
const float * boxes_a_data = boxes_a.data<float>();
const float * boxes_b_data = boxes_b.data<float>();
float * ans_overlap_data = ans_overlap.data<float>();
boxesoverlapLauncher(num_a, boxes_a_data, num_b, boxes_b_data, ans_overlap_data);
return 1;
}
int boxes_iou_bev_gpu(at::Tensor boxes_a, at::Tensor boxes_b, at::Tensor ans_iou){
// params boxes_a: (N, 5) [x1, y1, x2, y2, ry]
// params boxes_b: (M, 5)
// params ans_overlap: (N, M)
CHECK_INPUT(boxes_a);
CHECK_INPUT(boxes_b);
CHECK_INPUT(ans_iou);
int num_a = boxes_a.size(0);
int num_b = boxes_b.size(0);
const float * boxes_a_data = boxes_a.data<float>();
const float * boxes_b_data = boxes_b.data<float>();
float * ans_iou_data = ans_iou.data<float>();
boxesioubevLauncher(num_a, boxes_a_data, num_b, boxes_b_data, ans_iou_data);
return 1;
}
int nms_gpu(at::Tensor boxes, at::Tensor keep, float nms_overlap_thresh){
// params boxes: (N, 5) [x1, y1, x2, y2, ry]
// params keep: (N)
CHECK_INPUT(boxes);
CHECK_CONTIGUOUS(keep);
int boxes_num = boxes.size(0);
const float * boxes_data = boxes.data<float>();
long * keep_data = keep.data<long>();
const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS);
unsigned long long *mask_data = NULL;
CHECK_ERROR(cudaMalloc((void**)&mask_data, boxes_num * col_blocks * sizeof(unsigned long long)));
nmsLauncher(boxes_data, mask_data, boxes_num, nms_overlap_thresh);
// unsigned long long mask_cpu[boxes_num * col_blocks];
// unsigned long long *mask_cpu = new unsigned long long [boxes_num * col_blocks];
std::vector<unsigned long long> mask_cpu(boxes_num * col_blocks);
// printf("boxes_num=%d, col_blocks=%d\n", boxes_num, col_blocks);
CHECK_ERROR(cudaMemcpy(&mask_cpu[0], mask_data, boxes_num * col_blocks * sizeof(unsigned long long),
cudaMemcpyDeviceToHost));
cudaFree(mask_data);
unsigned long long remv_cpu[col_blocks];
memset(remv_cpu, 0, col_blocks * sizeof(unsigned long long));
int num_to_keep = 0;
for (int i = 0; i < boxes_num; i++){
int nblock = i / THREADS_PER_BLOCK_NMS;
int inblock = i % THREADS_PER_BLOCK_NMS;
if (!(remv_cpu[nblock] & (1ULL << inblock))){
keep_data[num_to_keep++] = i;
unsigned long long *p = &mask_cpu[0] + i * col_blocks;
for (int j = nblock; j < col_blocks; j++){
remv_cpu[j] |= p[j];
}
}
}
if ( cudaSuccess != cudaGetLastError() ) printf( "Error!\n" );
return num_to_keep;
}
int nms_normal_gpu(at::Tensor boxes, at::Tensor keep, float nms_overlap_thresh){
// params boxes: (N, 5) [x1, y1, x2, y2, ry]
// params keep: (N)
CHECK_INPUT(boxes);
CHECK_CONTIGUOUS(keep);
int boxes_num = boxes.size(0);
const float * boxes_data = boxes.data<float>();
long * keep_data = keep.data<long>();
const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS);
unsigned long long *mask_data = NULL;
CHECK_ERROR(cudaMalloc((void**)&mask_data, boxes_num * col_blocks * sizeof(unsigned long long)));
nmsNormalLauncher(boxes_data, mask_data, boxes_num, nms_overlap_thresh);
// unsigned long long mask_cpu[boxes_num * col_blocks];
// unsigned long long *mask_cpu = new unsigned long long [boxes_num * col_blocks];
std::vector<unsigned long long> mask_cpu(boxes_num * col_blocks);
// printf("boxes_num=%d, col_blocks=%d\n", boxes_num, col_blocks);
CHECK_ERROR(cudaMemcpy(&mask_cpu[0], mask_data, boxes_num * col_blocks * sizeof(unsigned long long),
cudaMemcpyDeviceToHost));
cudaFree(mask_data);
unsigned long long remv_cpu[col_blocks];
memset(remv_cpu, 0, col_blocks * sizeof(unsigned long long));
int num_to_keep = 0;
for (int i = 0; i < boxes_num; i++){
int nblock = i / THREADS_PER_BLOCK_NMS;
int inblock = i % THREADS_PER_BLOCK_NMS;
if (!(remv_cpu[nblock] & (1ULL << inblock))){
keep_data[num_to_keep++] = i;
unsigned long long *p = &mask_cpu[0] + i * col_blocks;
for (int j = nblock; j < col_blocks; j++){
remv_cpu[j] |= p[j];
}
}
}
if ( cudaSuccess != cudaGetLastError() ) printf( "Error!\n" );
return num_to_keep;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("boxes_overlap_bev_gpu", &boxes_overlap_bev_gpu, "oriented boxes overlap");
m.def("boxes_iou_bev_gpu", &boxes_iou_bev_gpu, "oriented boxes iou");
m.def("nms_gpu", &nms_gpu, "oriented nms gpu");
m.def("nms_normal_gpu", &nms_normal_gpu, "nms gpu");
}
#include <stdio.h>
#define THREADS_PER_BLOCK 16
#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
//#define DEBUG
const int THREADS_PER_BLOCK_NMS = sizeof(unsigned long long) * 8;
const float EPS = 1e-8;
struct Point {
float x, y;
__device__ Point() {}
__device__ Point(double _x, double _y){
x = _x, y = _y;
}
__device__ void set(float _x, float _y){
x = _x; y = _y;
}
__device__ Point operator +(const Point &b)const{
return Point(x + b.x, y + b.y);
}
__device__ Point operator -(const Point &b)const{
return Point(x - b.x, y - b.y);
}
};
__device__ inline float cross(const Point &a, const Point &b){
return a.x * b.y - a.y * b.x;
}
__device__ inline float cross(const Point &p1, const Point &p2, const Point &p0){
return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
}
__device__ int check_rect_cross(const Point &p1, const Point &p2, const Point &q1, const Point &q2){
int ret = min(p1.x,p2.x) <= max(q1.x,q2.x) &&
min(q1.x,q2.x) <= max(p1.x,p2.x) &&
min(p1.y,p2.y) <= max(q1.y,q2.y) &&
min(q1.y,q2.y) <= max(p1.y,p2.y);
return ret;
}
__device__ inline int check_in_box2d(const float *box, const Point &p){
//params: box (5) [x1, y1, x2, y2, angle]
const float MARGIN = 1e-5;
float center_x = (box[0] + box[2]) / 2;
float center_y = (box[1] + box[3]) / 2;
float angle_cos = cos(-box[4]), angle_sin = sin(-box[4]); // rotate the point in the opposite direction of box
float rot_x = (p.x - center_x) * angle_cos + (p.y - center_y) * angle_sin + center_x;
float rot_y = -(p.x - center_x) * angle_sin + (p.y - center_y) * angle_cos + center_y;
#ifdef DEBUG
printf("box: (%.3f, %.3f, %.3f, %.3f, %.3f)\n", box[0], box[1], box[2], box[3], box[4]);
printf("center: (%.3f, %.3f), cossin(%.3f, %.3f), src(%.3f, %.3f), rot(%.3f, %.3f)\n", center_x, center_y,
angle_cos, angle_sin, p.x, p.y, rot_x, rot_y);
#endif
return (rot_x > box[0] - MARGIN && rot_x < box[2] + MARGIN && rot_y > box[1] - MARGIN && rot_y < box[3] + MARGIN);
}
__device__ inline int intersection(const Point &p1, const Point &p0, const Point &q1, const Point &q0, Point &ans){
// fast exclusion
if (check_rect_cross(p0, p1, q0, q1) == 0) return 0;
// check cross standing
float s1 = cross(q0, p1, p0);
float s2 = cross(p1, q1, p0);
float s3 = cross(p0, q1, q0);
float s4 = cross(q1, p1, q0);
if (!(s1 * s2 > 0 && s3 * s4 > 0)) return 0;
// calculate intersection of two lines
float s5 = cross(q1, p1, p0);
if(fabs(s5 - s1) > EPS){
ans.x = (s5 * q0.x - s1 * q1.x) / (s5 - s1);
ans.y = (s5 * q0.y - s1 * q1.y) / (s5 - s1);
}
else{
float a0 = p0.y - p1.y, b0 = p1.x - p0.x, c0 = p0.x * p1.y - p1.x * p0.y;
float a1 = q0.y - q1.y, b1 = q1.x - q0.x, c1 = q0.x * q1.y - q1.x * q0.y;
float D = a0 * b1 - a1 * b0;
ans.x = (b0 * c1 - b1 * c0) / D;
ans.y = (a1 * c0 - a0 * c1) / D;
}
return 1;
}
__device__ inline void rotate_around_center(const Point &center, const float angle_cos, const float angle_sin, Point &p){
float new_x = (p.x - center.x) * angle_cos + (p.y - center.y) * angle_sin + center.x;
float new_y = -(p.x - center.x) * angle_sin + (p.y - center.y) * angle_cos + center.y;
p.set(new_x, new_y);
}
__device__ inline int point_cmp(const Point &a, const Point &b, const Point &center){
return atan2(a.y - center.y, a.x - center.x) > atan2(b.y - center.y, b.x - center.x);
}
__device__ inline float box_overlap(const float *box_a, const float *box_b){
// params: box_a (5) [x1, y1, x2, y2, angle]
// params: box_b (5) [x1, y1, x2, y2, angle]
float a_x1 = box_a[0], a_y1 = box_a[1], a_x2 = box_a[2], a_y2 = box_a[3], a_angle = box_a[4];
float b_x1 = box_b[0], b_y1 = box_b[1], b_x2 = box_b[2], b_y2 = box_b[3], b_angle = box_b[4];
Point center_a((a_x1 + a_x2) / 2, (a_y1 + a_y2) / 2);
Point center_b((b_x1 + b_x2) / 2, (b_y1 + b_y2) / 2);
#ifdef DEBUG
printf("a: (%.3f, %.3f, %.3f, %.3f, %.3f), b: (%.3f, %.3f, %.3f, %.3f, %.3f)\n", a_x1, a_y1, a_x2, a_y2, a_angle,
b_x1, b_y1, b_x2, b_y2, b_angle);
printf("center a: (%.3f, %.3f), b: (%.3f, %.3f)\n", center_a.x, center_a.y, center_b.x, center_b.y);
#endif
Point box_a_corners[5];
box_a_corners[0].set(a_x1, a_y1);
box_a_corners[1].set(a_x2, a_y1);
box_a_corners[2].set(a_x2, a_y2);
box_a_corners[3].set(a_x1, a_y2);
Point box_b_corners[5];
box_b_corners[0].set(b_x1, b_y1);
box_b_corners[1].set(b_x2, b_y1);
box_b_corners[2].set(b_x2, b_y2);
box_b_corners[3].set(b_x1, b_y2);
// get oriented corners
float a_angle_cos = cos(a_angle), a_angle_sin = sin(a_angle);
float b_angle_cos = cos(b_angle), b_angle_sin = sin(b_angle);
for (int k = 0; k < 4; k++){
#ifdef DEBUG
printf("before corner %d: a(%.3f, %.3f), b(%.3f, %.3f) \n", k, box_a_corners[k].x, box_a_corners[k].y, box_b_corners[k].x, box_b_corners[k].y);
#endif
rotate_around_center(center_a, a_angle_cos, a_angle_sin, box_a_corners[k]);
rotate_around_center(center_b, b_angle_cos, b_angle_sin, box_b_corners[k]);
#ifdef DEBUG
printf("corner %d: a(%.3f, %.3f), b(%.3f, %.3f) \n", k, box_a_corners[k].x, box_a_corners[k].y, box_b_corners[k].x, box_b_corners[k].y);
#endif
}
box_a_corners[4] = box_a_corners[0];
box_b_corners[4] = box_b_corners[0];
// get intersection of lines
Point cross_points[16];
Point poly_center;
int cnt = 0, flag = 0;
poly_center.set(0, 0);
for (int i = 0; i < 4; i++){
for (int j = 0; j < 4; j++){
flag = intersection(box_a_corners[i + 1], box_a_corners[i], box_b_corners[j + 1], box_b_corners[j], cross_points[cnt]);
if (flag){
poly_center = poly_center + cross_points[cnt];
cnt++;
}
}
}
// check corners
for (int k = 0; k < 4; k++){
if (check_in_box2d(box_a, box_b_corners[k])){
poly_center = poly_center + box_b_corners[k];
cross_points[cnt] = box_b_corners[k];
cnt++;
}
if (check_in_box2d(box_b, box_a_corners[k])){
poly_center = poly_center + box_a_corners[k];
cross_points[cnt] = box_a_corners[k];
cnt++;
}
}
poly_center.x /= cnt;
poly_center.y /= cnt;
// sort the points of polygon
Point temp;
for (int j = 0; j < cnt - 1; j++){
for (int i = 0; i < cnt - j - 1; i++){
if (point_cmp(cross_points[i], cross_points[i + 1], poly_center)){
temp = cross_points[i];
cross_points[i] = cross_points[i + 1];
cross_points[i + 1] = temp;
}
}
}
#ifdef DEBUG
printf("cnt=%d\n", cnt);
for (int i = 0; i < cnt; i++){
printf("All cross point %d: (%.3f, %.3f)\n", i, cross_points[i].x, cross_points[i].y);
}
#endif
// get the overlap areas
float area = 0;
for (int k = 0; k < cnt - 1; k++){
area += cross(cross_points[k] - cross_points[0], cross_points[k + 1] - cross_points[0]);
}
return fabs(area) / 2.0;
}
__device__ inline float iou_bev(const float *box_a, const float *box_b){
// params: box_a (5) [x1, y1, x2, y2, angle]
// params: box_b (5) [x1, y1, x2, y2, angle]
float sa = (box_a[2] - box_a[0]) * (box_a[3] - box_a[1]);
float sb = (box_b[2] - box_b[0]) * (box_b[3] - box_b[1]);
float s_overlap = box_overlap(box_a, box_b);
return s_overlap / fmaxf(sa + sb - s_overlap, EPS);
}
__global__ void boxes_overlap_kernel(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_overlap){
const int a_idx = blockIdx.y * THREADS_PER_BLOCK + threadIdx.y;
const int b_idx = blockIdx.x * THREADS_PER_BLOCK + threadIdx.x;
if (a_idx >= num_a || b_idx >= num_b){
return;
}
const float * cur_box_a = boxes_a + a_idx * 5;
const float * cur_box_b = boxes_b + b_idx * 5;
float s_overlap = box_overlap(cur_box_a, cur_box_b);
ans_overlap[a_idx * num_b + b_idx] = s_overlap;
}
__global__ void boxes_iou_bev_kernel(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_iou){
const int a_idx = blockIdx.y * THREADS_PER_BLOCK + threadIdx.y;
const int b_idx = blockIdx.x * THREADS_PER_BLOCK + threadIdx.x;
if (a_idx >= num_a || b_idx >= num_b){
return;
}
const float * cur_box_a = boxes_a + a_idx * 5;
const float * cur_box_b = boxes_b + b_idx * 5;
float cur_iou_bev = iou_bev(cur_box_a, cur_box_b);
ans_iou[a_idx * num_b + b_idx] = cur_iou_bev;
}
__global__ void nms_kernel(const int boxes_num, const float nms_overlap_thresh,
const float *boxes, unsigned long long *mask){
//params: boxes (N, 5) [x1, y1, x2, y2, ry]
//params: mask (N, N/THREADS_PER_BLOCK_NMS)
const int row_start = blockIdx.y;
const int col_start = blockIdx.x;
// if (row_start > col_start) return;
const int row_size = fminf(boxes_num - row_start * THREADS_PER_BLOCK_NMS, THREADS_PER_BLOCK_NMS);
const int col_size = fminf(boxes_num - col_start * THREADS_PER_BLOCK_NMS, THREADS_PER_BLOCK_NMS);
__shared__ float block_boxes[THREADS_PER_BLOCK_NMS * 5];
if (threadIdx.x < col_size) {
block_boxes[threadIdx.x * 5 + 0] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 5 + 0];
block_boxes[threadIdx.x * 5 + 1] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 5 + 1];
block_boxes[threadIdx.x * 5 + 2] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 5 + 2];
block_boxes[threadIdx.x * 5 + 3] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 5 + 3];
block_boxes[threadIdx.x * 5 + 4] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 5 + 4];
}
__syncthreads();
if (threadIdx.x < row_size) {
const int cur_box_idx = THREADS_PER_BLOCK_NMS * row_start + threadIdx.x;
const float *cur_box = boxes + cur_box_idx * 5;
int i = 0;
unsigned long long t = 0;
int start = 0;
if (row_start == col_start) {
start = threadIdx.x + 1;
}
for (i = start; i < col_size; i++) {
if (iou_bev(cur_box, block_boxes + i * 5) > nms_overlap_thresh){
t |= 1ULL << i;
}
}
const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS);
mask[cur_box_idx * col_blocks + col_start] = t;
}
}
__device__ inline float iou_normal(float const * const a, float const * const b) {
float left = fmaxf(a[0], b[0]), right = fminf(a[2], b[2]);
float top = fmaxf(a[1], b[1]), bottom = fminf(a[3], b[3]);
float width = fmaxf(right - left, 0.f), height = fmaxf(bottom - top, 0.f);
float interS = width * height;
float Sa = (a[2] - a[0]) * (a[3] - a[1]);
float Sb = (b[2] - b[0]) * (b[3] - b[1]);
return interS / fmaxf(Sa + Sb - interS, EPS);
}
__global__ void nms_normal_kernel(const int boxes_num, const float nms_overlap_thresh,
const float *boxes, unsigned long long *mask){
//params: boxes (N, 5) [x1, y1, x2, y2, ry]
//params: mask (N, N/THREADS_PER_BLOCK_NMS)
const int row_start = blockIdx.y;
const int col_start = blockIdx.x;
// if (row_start > col_start) return;
const int row_size = fminf(boxes_num - row_start * THREADS_PER_BLOCK_NMS, THREADS_PER_BLOCK_NMS);
const int col_size = fminf(boxes_num - col_start * THREADS_PER_BLOCK_NMS, THREADS_PER_BLOCK_NMS);
__shared__ float block_boxes[THREADS_PER_BLOCK_NMS * 5];
if (threadIdx.x < col_size) {
block_boxes[threadIdx.x * 5 + 0] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 5 + 0];
block_boxes[threadIdx.x * 5 + 1] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 5 + 1];
block_boxes[threadIdx.x * 5 + 2] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 5 + 2];
block_boxes[threadIdx.x * 5 + 3] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 5 + 3];
block_boxes[threadIdx.x * 5 + 4] = boxes[(THREADS_PER_BLOCK_NMS * col_start + threadIdx.x) * 5 + 4];
}
__syncthreads();
if (threadIdx.x < row_size) {
const int cur_box_idx = THREADS_PER_BLOCK_NMS * row_start + threadIdx.x;
const float *cur_box = boxes + cur_box_idx * 5;
int i = 0;
unsigned long long t = 0;
int start = 0;
if (row_start == col_start) {
start = threadIdx.x + 1;
}
for (i = start; i < col_size; i++) {
if (iou_normal(cur_box, block_boxes + i * 5) > nms_overlap_thresh){
t |= 1ULL << i;
}
}
const int col_blocks = DIVUP(boxes_num, THREADS_PER_BLOCK_NMS);
mask[cur_box_idx * col_blocks + col_start] = t;
}
}
void boxesoverlapLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_overlap){
dim3 blocks(DIVUP(num_b, THREADS_PER_BLOCK), DIVUP(num_a, THREADS_PER_BLOCK)); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK, THREADS_PER_BLOCK);
boxes_overlap_kernel<<<blocks, threads>>>(num_a, boxes_a, num_b, boxes_b, ans_overlap);
#ifdef DEBUG
cudaDeviceSynchronize(); // for using printf in kernel function
#endif
}
void boxesioubevLauncher(const int num_a, const float *boxes_a, const int num_b, const float *boxes_b, float *ans_iou){
dim3 blocks(DIVUP(num_b, THREADS_PER_BLOCK), DIVUP(num_a, THREADS_PER_BLOCK)); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK, THREADS_PER_BLOCK);
boxes_iou_bev_kernel<<<blocks, threads>>>(num_a, boxes_a, num_b, boxes_b, ans_iou);
}
void nmsLauncher(const float *boxes, unsigned long long * mask, int boxes_num, float nms_overlap_thresh){
dim3 blocks(DIVUP(boxes_num, THREADS_PER_BLOCK_NMS),
DIVUP(boxes_num, THREADS_PER_BLOCK_NMS));
dim3 threads(THREADS_PER_BLOCK_NMS);
nms_kernel<<<blocks, threads>>>(boxes_num, nms_overlap_thresh, boxes, mask);
}
void nmsNormalLauncher(const float *boxes, unsigned long long * mask, int boxes_num, float nms_overlap_thresh){
dim3 blocks(DIVUP(boxes_num, THREADS_PER_BLOCK_NMS),
DIVUP(boxes_num, THREADS_PER_BLOCK_NMS));
dim3 threads(THREADS_PER_BLOCK_NMS);
nms_normal_kernel<<<blocks, threads>>>(boxes_num, nms_overlap_thresh, boxes, mask);
}
import torch.nn as nn
from mmdet.ops.norm import norm_cfg
from .sync_bn import NaiveSyncBatchNorm1d, NaiveSyncBatchNorm2d
norm_cfg.update({
'BN1d': ('bn', nn.BatchNorm1d),
'naiveSyncBN2d': ('bn', NaiveSyncBatchNorm2d),
'naiveSyncBN1d': ('bn', NaiveSyncBatchNorm1d),
})
# Copyright 2019 Yan Yan
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .conv import (SparseConv2d, SparseConv3d, SparseConvTranspose2d,
SparseConvTranspose3d, SparseInverseConv2d,
SparseInverseConv3d, SubMConv2d, SubMConv3d)
from .modules import SparseModule, SparseSequential
from .pool import SparseMaxPool2d, SparseMaxPool3d
from .structure import SparseConvTensor, scatter_nd
__all__ = [
'SparseConv2d',
'SparseConv3d',
'SubMConv2d',
'SubMConv3d',
'SparseConvTranspose2d',
'SparseConvTranspose3d',
'SparseInverseConv2d',
'SparseInverseConv3d',
'SparseModule',
'SparseSequential',
'SparseMaxPool2d',
'SparseMaxPool3d',
'SparseConvTensor',
'scatter_nd',
]
# Copyright 2019 Yan Yan
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import torch
from torch.nn import init
from torch.nn.parameter import Parameter
from . import functional as Fsp
from . import ops
from .modules import SparseModule
from .structure import SparseConvTensor
def _calculate_fan_in_and_fan_out_hwio(tensor):
dimensions = tensor.ndimension()
if dimensions < 2:
raise ValueError('fan in and fan out can not be computed for tensor'
'with fewer than 2 dimensions')
if dimensions == 2: # Linear
fan_in = tensor.size(-2)
fan_out = tensor.size(-1)
else:
num_input_fmaps = tensor.size(-2)
num_output_fmaps = tensor.size(-1)
receptive_field_size = 1
if tensor.dim() > 2:
receptive_field_size = tensor[..., 0, 0].numel()
fan_in = num_input_fmaps * receptive_field_size
fan_out = num_output_fmaps * receptive_field_size
return fan_in, fan_out
class SparseConvolution(SparseModule):
def __init__(self,
ndim,
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
subm=False,
output_padding=0,
transposed=False,
inverse=False,
indice_key=None,
fused_bn=False):
super(SparseConvolution, self).__init__()
assert groups == 1
if not isinstance(kernel_size, (list, tuple)):
kernel_size = [kernel_size] * ndim
if not isinstance(stride, (list, tuple)):
stride = [stride] * ndim
if not isinstance(padding, (list, tuple)):
padding = [padding] * ndim
if not isinstance(dilation, (list, tuple)):
dilation = [dilation] * ndim
if not isinstance(output_padding, (list, tuple)):
output_padding = [output_padding] * ndim
for d, s in zip(dilation, stride):
assert any([s == 1, d == 1]), "don't support this."
self.ndim = ndim
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.conv1x1 = np.prod(kernel_size) == 1
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = transposed
self.inverse = inverse
self.output_padding = output_padding
self.groups = groups
self.subm = subm
self.indice_key = indice_key
self.fused_bn = fused_bn
self.weight = Parameter(
torch.Tensor(*kernel_size, in_channels, out_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = _calculate_fan_in_and_fan_out_hwio(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
def forward(self, input):
assert isinstance(input, SparseConvTensor)
features = input.features
device = features.device
indices = input.indices
spatial_shape = input.spatial_shape
batch_size = input.batch_size
if not self.subm:
if self.transposed:
out_spatial_shape = ops.get_deconv_output_size(
spatial_shape, self.kernel_size, self.stride, self.padding,
self.dilation, self.output_padding)
else:
out_spatial_shape = ops.get_conv_output_size(
spatial_shape, self.kernel_size, self.stride, self.padding,
self.dilation)
else:
out_spatial_shape = spatial_shape
# input.update_grid(out_spatial_shape)
# t = time.time()
if self.conv1x1:
features = torch.mm(
input.features,
self.weight.view(self.in_channels, self.out_channels))
if self.bias is not None:
features += self.bias
out_tensor = SparseConvTensor(features, input.indices,
input.spatial_shape,
input.batch_size)
out_tensor.indice_dict = input.indice_dict
out_tensor.grid = input.grid
return out_tensor
datas = input.find_indice_pair(self.indice_key)
if self.inverse:
assert datas is not None and self.indice_key is not None
_, outids, indice_pairs, indice_pair_num, out_spatial_shape = datas
assert indice_pairs.shape[0] == np.prod(
self.kernel_size
), 'inverse conv must have same kernel size as its couple conv'
else:
if self.indice_key is not None and datas is not None:
outids, _, indice_pairs, indice_pair_num, _ = datas
else:
outids, indice_pairs, indice_pair_num = ops.get_indice_pairs(
indices,
batch_size,
spatial_shape,
self.kernel_size,
self.stride,
self.padding,
self.dilation,
self.output_padding,
self.subm,
self.transposed,
grid=input.grid)
input.indice_dict[self.indice_key] = (outids, indices,
indice_pairs,
indice_pair_num,
spatial_shape)
if self.fused_bn:
assert self.bias is not None
out_features = ops.fused_indice_conv(features, self.weight,
self.bias,
indice_pairs.to(device),
indice_pair_num,
outids.shape[0], self.inverse,
self.subm)
else:
if self.subm:
out_features = Fsp.indice_subm_conv(features, self.weight,
indice_pairs.to(device),
indice_pair_num,
outids.shape[0])
else:
if self.inverse:
out_features = Fsp.indice_inverse_conv(
features, self.weight, indice_pairs.to(device),
indice_pair_num, outids.shape[0])
else:
out_features = Fsp.indice_conv(features, self.weight,
indice_pairs.to(device),
indice_pair_num,
outids.shape[0])
if self.bias is not None:
out_features += self.bias
out_tensor = SparseConvTensor(out_features, outids, out_spatial_shape,
batch_size)
out_tensor.indice_dict = input.indice_dict
out_tensor.grid = input.grid
return out_tensor
class SparseConv2d(SparseConvolution):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
indice_key=None):
super(SparseConv2d, self).__init__(
2,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
indice_key=indice_key)
class SparseConv3d(SparseConvolution):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
indice_key=None):
super(SparseConv3d, self).__init__(
3,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
indice_key=indice_key)
class SparseConv4d(SparseConvolution):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
indice_key=None):
super(SparseConv4d, self).__init__(
4,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
indice_key=indice_key)
class SparseConvTranspose2d(SparseConvolution):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
indice_key=None):
super(SparseConvTranspose2d, self).__init__(
2,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
transposed=True,
indice_key=indice_key)
class SparseConvTranspose3d(SparseConvolution):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
indice_key=None):
super(SparseConvTranspose3d, self).__init__(
3,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
transposed=True,
indice_key=indice_key)
class SparseInverseConv2d(SparseConvolution):
def __init__(self,
in_channels,
out_channels,
kernel_size,
indice_key,
bias=True):
super(SparseInverseConv2d, self).__init__(
2,
in_channels,
out_channels,
kernel_size,
bias=bias,
inverse=True,
indice_key=indice_key)
class SparseInverseConv3d(SparseConvolution):
def __init__(self,
in_channels,
out_channels,
kernel_size,
indice_key,
bias=True):
super(SparseInverseConv3d, self).__init__(
3,
in_channels,
out_channels,
kernel_size,
bias=bias,
inverse=True,
indice_key=indice_key)
class SubMConv2d(SparseConvolution):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
indice_key=None):
super(SubMConv2d, self).__init__(
2,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
True,
indice_key=indice_key)
class SubMConv3d(SparseConvolution):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
indice_key=None):
super(SubMConv3d, self).__init__(
3,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
True,
indice_key=indice_key)
class SubMConv4d(SparseConvolution):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
indice_key=None):
super(SubMConv4d, self).__init__(
4,
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
True,
indice_key=indice_key)
# Copyright 2019 Yan Yan
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from torch.autograd import Function
from . import ops as ops
class SparseConvFunction(Function):
@staticmethod
def forward(ctx, features, filters, indice_pairs, indice_pair_num,
num_activate_out):
ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters)
return ops.indice_conv(features, filters, indice_pairs,
indice_pair_num, num_activate_out, False)
@staticmethod
def backward(ctx, grad_output):
indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors
input_bp, filters_bp = ops.indice_conv_backward(
features, filters, grad_output, indice_pairs, indice_pair_num,
False)
return input_bp, filters_bp, None, None, None
class SparseInverseConvFunction(Function):
@staticmethod
def forward(ctx, features, filters, indice_pairs, indice_pair_num,
num_activate_out):
ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters)
return ops.indice_conv(features, filters, indice_pairs,
indice_pair_num, num_activate_out, True, False)
@staticmethod
def backward(ctx, grad_output):
indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors
input_bp, filters_bp = ops.indice_conv_backward(
features, filters, grad_output, indice_pairs, indice_pair_num,
True, False)
return input_bp, filters_bp, None, None, None
class SubMConvFunction(Function):
@staticmethod
def forward(ctx, features, filters, indice_pairs, indice_pair_num,
num_activate_out):
ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters)
return ops.indice_conv(features, filters, indice_pairs,
indice_pair_num, num_activate_out, False, True)
@staticmethod
def backward(ctx, grad_output):
indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors
input_bp, filters_bp = ops.indice_conv_backward(
features, filters, grad_output, indice_pairs, indice_pair_num,
False, True)
return input_bp, filters_bp, None, None, None
class SparseMaxPoolFunction(Function):
@staticmethod
def forward(ctx, features, indice_pairs, indice_pair_num,
num_activate_out):
out = ops.indice_maxpool(features, indice_pairs, indice_pair_num,
num_activate_out)
ctx.save_for_backward(indice_pairs, indice_pair_num, features, out)
return out
@staticmethod
def backward(ctx, grad_output):
indice_pairs, indice_pair_num, features, out = ctx.saved_tensors
input_bp = ops.indice_maxpool_backward(features, out, grad_output,
indice_pairs, indice_pair_num)
return input_bp, None, None, None
indice_conv = SparseConvFunction.apply
indice_inverse_conv = SparseInverseConvFunction.apply
indice_subm_conv = SubMConvFunction.apply
indice_maxpool = SparseMaxPoolFunction.apply
// Copyright 2019 Yan Yan
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef PARAMS_GRID_H_
#define PARAMS_GRID_H_
#include <tuple>
#include <vector>
namespace detail {
template <class T> int getTotalSize(std::vector<T> arg) { return arg.size(); }
template <class T, class... TArgs>
int getTotalSize(std::vector<T> arg, std::vector<TArgs>... args) {
return arg.size() * getTotalSize(args...);
}
template <typename T> int getSize(std::vector<T> arg) { return arg.size(); }
template <int Idx, class TT, class T>
void assigner(TT &src, std::vector<int> counter, std::vector<T> &arg) {
std::get<Idx>(src) = arg[counter[Idx]];
}
template <int Idx, class TT, class T, class... TArgs>
void assigner(TT &src, std::vector<int> counter, std::vector<T> &arg,
std::vector<TArgs> &... args) {
std::get<Idx>(src) = arg[counter[Idx]];
assigner<Idx + 1>(src, counter, args...);
}
} // namespace detail
template <class... TArgs>
std::vector<std::tuple<TArgs...>> paramsGrid(std::vector<TArgs>... args) {
int length = detail::getTotalSize(args...);
std::vector<int> sizes = {detail::getSize(args)...};
int size = sizes.size();
std::vector<std::tuple<TArgs...>> params(length);
std::vector<int> counter(size);
for (int i = 0; i < length; ++i) {
detail::assigner<0>(params[i], counter, args...);
counter[size - 1] += 1;
for (int c = size - 1; c >= 0; --c) {
if (counter[c] == sizes[c] && c > 0) {
counter[c - 1] += 1;
counter[c] = 0;
}
}
}
return params;
}
#endif
// Copyright Louis Delacroix 2010 - 2014.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// A pretty printing library for C++
//
// Usage:
// Include this header, and operator<< will "just work".
#ifndef H_PRETTY_PRINT
#define H_PRETTY_PRINT
#include <cstddef>
#include <iterator>
#include <memory>
#include <ostream>
#include <set>
#include <tuple>
#include <type_traits>
#include <unordered_set>
#include <utility>
#include <valarray>
namespace pretty_print
{
namespace detail
{
// SFINAE type trait to detect whether T::const_iterator exists.
struct sfinae_base
{
using yes = char;
using no = yes[2];
};
template <typename T>
struct has_const_iterator : private sfinae_base
{
private:
template <typename C> static yes & test(typename C::const_iterator*);
template <typename C> static no & test(...);
public:
static const bool value = sizeof(test<T>(nullptr)) == sizeof(yes);
using type = T;
};
template <typename T>
struct has_begin_end : private sfinae_base
{
private:
template <typename C>
static yes & f(typename std::enable_if<
std::is_same<decltype(static_cast<typename C::const_iterator(C::*)() const>(&C::begin)),
typename C::const_iterator(C::*)() const>::value>::type *);
template <typename C> static no & f(...);
template <typename C>
static yes & g(typename std::enable_if<
std::is_same<decltype(static_cast<typename C::const_iterator(C::*)() const>(&C::end)),
typename C::const_iterator(C::*)() const>::value, void>::type*);
template <typename C> static no & g(...);
public:
static bool const beg_value = sizeof(f<T>(nullptr)) == sizeof(yes);
static bool const end_value = sizeof(g<T>(nullptr)) == sizeof(yes);
};
} // namespace detail
// Holds the delimiter values for a specific character type
template <typename TChar>
struct delimiters_values
{
using char_type = TChar;
const char_type * prefix;
const char_type * delimiter;
const char_type * postfix;
};
// Defines the delimiter values for a specific container and character type
template <typename T, typename TChar>
struct delimiters
{
using type = delimiters_values<TChar>;
static const type values;
};
// Functor to print containers. You can use this directly if you want
// to specificy a non-default delimiters type. The printing logic can
// be customized by specializing the nested template.
template <typename T,
typename TChar = char,
typename TCharTraits = ::std::char_traits<TChar>,
typename TDelimiters = delimiters<T, TChar>>
struct print_container_helper
{
using delimiters_type = TDelimiters;
using ostream_type = std::basic_ostream<TChar, TCharTraits>;
template <typename U>
struct printer
{
static void print_body(const U & c, ostream_type & stream)
{
using std::begin;
using std::end;
auto it = begin(c);
const auto the_end = end(c);
if (it != the_end)
{
for ( ; ; )
{
stream << *it;
if (++it == the_end) break;
if (delimiters_type::values.delimiter != NULL)
stream << delimiters_type::values.delimiter;
}
}
}
};
print_container_helper(const T & container)
: container_(container)
{ }
inline void operator()(ostream_type & stream) const
{
if (delimiters_type::values.prefix != NULL)
stream << delimiters_type::values.prefix;
printer<T>::print_body(container_, stream);
if (delimiters_type::values.postfix != NULL)
stream << delimiters_type::values.postfix;
}
private:
const T & container_;
};
// Specialization for pairs
template <typename T, typename TChar, typename TCharTraits, typename TDelimiters>
template <typename T1, typename T2>
struct print_container_helper<T, TChar, TCharTraits, TDelimiters>::printer<std::pair<T1, T2>>
{
using ostream_type = typename print_container_helper<T, TChar, TCharTraits, TDelimiters>::ostream_type;
static void print_body(const std::pair<T1, T2> & c, ostream_type & stream)
{
stream << c.first;
if (print_container_helper<T, TChar, TCharTraits, TDelimiters>::delimiters_type::values.delimiter != NULL)
stream << print_container_helper<T, TChar, TCharTraits, TDelimiters>::delimiters_type::values.delimiter;
stream << c.second;
}
};
// Specialization for tuples
template <typename T, typename TChar, typename TCharTraits, typename TDelimiters>
template <typename ...Args>
struct print_container_helper<T, TChar, TCharTraits, TDelimiters>::printer<std::tuple<Args...>>
{
using ostream_type = typename print_container_helper<T, TChar, TCharTraits, TDelimiters>::ostream_type;
using element_type = std::tuple<Args...>;
template <std::size_t I> struct Int { };
static void print_body(const element_type & c, ostream_type & stream)
{
tuple_print(c, stream, Int<0>());
}
static void tuple_print(const element_type &, ostream_type &, Int<sizeof...(Args)>)
{
}
static void tuple_print(const element_type & c, ostream_type & stream,
typename std::conditional<sizeof...(Args) != 0, Int<0>, std::nullptr_t>::type)
{
stream << std::get<0>(c);
tuple_print(c, stream, Int<1>());
}
template <std::size_t N>
static void tuple_print(const element_type & c, ostream_type & stream, Int<N>)
{
if (print_container_helper<T, TChar, TCharTraits, TDelimiters>::delimiters_type::values.delimiter != NULL)
stream << print_container_helper<T, TChar, TCharTraits, TDelimiters>::delimiters_type::values.delimiter;
stream << std::get<N>(c);
tuple_print(c, stream, Int<N + 1>());
}
};
// Prints a print_container_helper to the specified stream.
template<typename T, typename TChar, typename TCharTraits, typename TDelimiters>
inline std::basic_ostream<TChar, TCharTraits> & operator<<(
std::basic_ostream<TChar, TCharTraits> & stream,
const print_container_helper<T, TChar, TCharTraits, TDelimiters> & helper)
{
helper(stream);
return stream;
}
// Basic is_container template; specialize to derive from std::true_type for all desired container types
template <typename T>
struct is_container : public std::integral_constant<bool,
detail::has_const_iterator<T>::value &&
detail::has_begin_end<T>::beg_value &&
detail::has_begin_end<T>::end_value> { };
template <typename T, std::size_t N>
struct is_container<T[N]> : std::true_type { };
template <std::size_t N>
struct is_container<char[N]> : std::false_type { };
template <typename T>
struct is_container<std::valarray<T>> : std::true_type { };
template <typename T1, typename T2>
struct is_container<std::pair<T1, T2>> : std::true_type { };
template <typename ...Args>
struct is_container<std::tuple<Args...>> : std::true_type { };
// Default delimiters
template <typename T> struct delimiters<T, char> { static const delimiters_values<char> values; };
template <typename T> const delimiters_values<char> delimiters<T, char>::values = { "[", ", ", "]" };
template <typename T> struct delimiters<T, wchar_t> { static const delimiters_values<wchar_t> values; };
template <typename T> const delimiters_values<wchar_t> delimiters<T, wchar_t>::values = { L"[", L", ", L"]" };
// Delimiters for (multi)set and unordered_(multi)set
template <typename T, typename TComp, typename TAllocator>
struct delimiters< ::std::set<T, TComp, TAllocator>, char> { static const delimiters_values<char> values; };
template <typename T, typename TComp, typename TAllocator>
const delimiters_values<char> delimiters< ::std::set<T, TComp, TAllocator>, char>::values = { "{", ", ", "}" };
template <typename T, typename TComp, typename TAllocator>
struct delimiters< ::std::set<T, TComp, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
template <typename T, typename TComp, typename TAllocator>
const delimiters_values<wchar_t> delimiters< ::std::set<T, TComp, TAllocator>, wchar_t>::values = { L"{", L", ", L"}" };
template <typename T, typename TComp, typename TAllocator>
struct delimiters< ::std::multiset<T, TComp, TAllocator>, char> { static const delimiters_values<char> values; };
template <typename T, typename TComp, typename TAllocator>
const delimiters_values<char> delimiters< ::std::multiset<T, TComp, TAllocator>, char>::values = { "{", ", ", "}" };
template <typename T, typename TComp, typename TAllocator>
struct delimiters< ::std::multiset<T, TComp, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
template <typename T, typename TComp, typename TAllocator>
const delimiters_values<wchar_t> delimiters< ::std::multiset<T, TComp, TAllocator>, wchar_t>::values = { L"{", L", ", L"}" };
template <typename T, typename THash, typename TEqual, typename TAllocator>
struct delimiters< ::std::unordered_set<T, THash, TEqual, TAllocator>, char> { static const delimiters_values<char> values; };
template <typename T, typename THash, typename TEqual, typename TAllocator>
const delimiters_values<char> delimiters< ::std::unordered_set<T, THash, TEqual, TAllocator>, char>::values = { "{", ", ", "}" };
template <typename T, typename THash, typename TEqual, typename TAllocator>
struct delimiters< ::std::unordered_set<T, THash, TEqual, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
template <typename T, typename THash, typename TEqual, typename TAllocator>
const delimiters_values<wchar_t> delimiters< ::std::unordered_set<T, THash, TEqual, TAllocator>, wchar_t>::values = { L"{", L", ", L"}" };
template <typename T, typename THash, typename TEqual, typename TAllocator>
struct delimiters< ::std::unordered_multiset<T, THash, TEqual, TAllocator>, char> { static const delimiters_values<char> values; };
template <typename T, typename THash, typename TEqual, typename TAllocator>
const delimiters_values<char> delimiters< ::std::unordered_multiset<T, THash, TEqual, TAllocator>, char>::values = { "{", ", ", "}" };
template <typename T, typename THash, typename TEqual, typename TAllocator>
struct delimiters< ::std::unordered_multiset<T, THash, TEqual, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
template <typename T, typename THash, typename TEqual, typename TAllocator>
const delimiters_values<wchar_t> delimiters< ::std::unordered_multiset<T, THash, TEqual, TAllocator>, wchar_t>::values = { L"{", L", ", L"}" };
// Delimiters for pair and tuple
template <typename T1, typename T2> struct delimiters<std::pair<T1, T2>, char> { static const delimiters_values<char> values; };
template <typename T1, typename T2> const delimiters_values<char> delimiters<std::pair<T1, T2>, char>::values = { "(", ", ", ")" };
template <typename T1, typename T2> struct delimiters< ::std::pair<T1, T2>, wchar_t> { static const delimiters_values<wchar_t> values; };
template <typename T1, typename T2> const delimiters_values<wchar_t> delimiters< ::std::pair<T1, T2>, wchar_t>::values = { L"(", L", ", L")" };
template <typename ...Args> struct delimiters<std::tuple<Args...>, char> { static const delimiters_values<char> values; };
template <typename ...Args> const delimiters_values<char> delimiters<std::tuple<Args...>, char>::values = { "(", ", ", ")" };
template <typename ...Args> struct delimiters< ::std::tuple<Args...>, wchar_t> { static const delimiters_values<wchar_t> values; };
template <typename ...Args> const delimiters_values<wchar_t> delimiters< ::std::tuple<Args...>, wchar_t>::values = { L"(", L", ", L")" };
// Type-erasing helper class for easy use of custom delimiters.
// Requires TCharTraits = std::char_traits<TChar> and TChar = char or wchar_t, and MyDelims needs to be defined for TChar.
// Usage: "cout << pretty_print::custom_delims<MyDelims>(x)".
struct custom_delims_base
{
virtual ~custom_delims_base() { }
virtual std::ostream & stream(::std::ostream &) = 0;
virtual std::wostream & stream(::std::wostream &) = 0;
};
template <typename T, typename Delims>
struct custom_delims_wrapper : custom_delims_base
{
custom_delims_wrapper(const T & t_) : t(t_) { }
std::ostream & stream(std::ostream & s)
{
return s << print_container_helper<T, char, std::char_traits<char>, Delims>(t);
}
std::wostream & stream(std::wostream & s)
{
return s << print_container_helper<T, wchar_t, std::char_traits<wchar_t>, Delims>(t);
}
private:
const T & t;
};
template <typename Delims>
struct custom_delims
{
template <typename Container>
custom_delims(const Container & c) : base(new custom_delims_wrapper<Container, Delims>(c)) { }
std::unique_ptr<custom_delims_base> base;
};
template <typename TChar, typename TCharTraits, typename Delims>
inline std::basic_ostream<TChar, TCharTraits> & operator<<(std::basic_ostream<TChar, TCharTraits> & s, const custom_delims<Delims> & p)
{
return p.base->stream(s);
}
// A wrapper for a C-style array given as pointer-plus-size.
// Usage: std::cout << pretty_print_array(arr, n) << std::endl;
template<typename T>
struct array_wrapper_n
{
typedef const T * const_iterator;
typedef T value_type;
array_wrapper_n(const T * const a, size_t n) : _array(a), _n(n) { }
inline const_iterator begin() const { return _array; }
inline const_iterator end() const { return _array + _n; }
private:
const T * const _array;
size_t _n;
};
// A wrapper for hash-table based containers that offer local iterators to each bucket.
// Usage: std::cout << bucket_print(m, 4) << std::endl; (Prints bucket 5 of container m.)
template <typename T>
struct bucket_print_wrapper
{
typedef typename T::const_local_iterator const_iterator;
typedef typename T::size_type size_type;
const_iterator begin() const
{
return m_map.cbegin(n);
}
const_iterator end() const
{
return m_map.cend(n);
}
bucket_print_wrapper(const T & m, size_type bucket) : m_map(m), n(bucket) { }
private:
const T & m_map;
const size_type n;
};
} // namespace pretty_print
// Global accessor functions for the convenience wrappers
template<typename T>
inline pretty_print::array_wrapper_n<T> pretty_print_array(const T * const a, size_t n)
{
return pretty_print::array_wrapper_n<T>(a, n);
}
template <typename T> pretty_print::bucket_print_wrapper<T>
bucket_print(const T & m, typename T::size_type n)
{
return pretty_print::bucket_print_wrapper<T>(m, n);
}
// Main magic entry point: An overload snuck into namespace std.
// Can we do better?
namespace std
{
// Prints a container to the stream using default delimiters
template<typename T, typename TChar, typename TCharTraits>
inline typename enable_if< ::pretty_print::is_container<T>::value,
basic_ostream<TChar, TCharTraits> &>::type
operator<<(basic_ostream<TChar, TCharTraits> & stream, const T & container)
{
return stream << ::pretty_print::print_container_helper<T, TChar, TCharTraits>(container);
}
}
#endif // H_PRETTY_PRINT
// Copyright 2019 Yan Yan
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <iostream>
#include <pybind11/embed.h> // everything needed for embedding
#include <pybind11/functional.h>
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <tensorview/tensorview.h>
namespace py = pybind11;
template <typename T, typename TPyObject>
std::vector<T> array2Vector(TPyObject arr){
py::array arr_np = arr;
size_t size = arr.attr("size").template cast<size_t>();
py::array_t<T> arr_cc = arr_np;
std::vector<T> data(arr_cc.data(), arr_cc.data() + size);
return data;
}
template <typename T>
std::vector<T> arrayT2Vector(py::array_t<T> arr)
{
std::vector<T> data(arr.data(), arr.data() + arr.size());
return data;
}
template <typename T, typename TPyObject>
tv::TensorView<T> array2TensorView(TPyObject arr){
py::array arr_np = arr;
py::array_t<T> arr_cc = arr_np;
tv::Shape shape;
for (int i = 0; i < arr_cc.ndim(); ++i){
shape.push_back(arr_cc.shape(i));
}
return tv::TensorView<T>(arr_cc.mutable_data(), shape);
}
template <typename T>
tv::TensorView<T> arrayT2TensorView(py::array_t<T> arr){
tv::Shape shape;
for (int i = 0; i < arr.ndim(); ++i){
shape.push_back(arr.shape(i));
}
return tv::TensorView<T>(arr.mutable_data(), shape);
}
// Copyright 2019 Yan Yan
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef BOX_IOU_H
#define BOX_IOU_H
#include <pybind11/pybind11.h>
// must include pybind11/eigen.h if using eigen matrix as arguments.
#include <algorithm>
#include <boost/geometry.hpp>
#include <pybind11/numpy.h>
namespace spconv {
// #include "voxelnet/core/cc/pybind11_helper.h"
namespace py = pybind11;
using namespace pybind11::literals;
template <typename DType, typename ShapeContainer>
inline py::array_t<DType> constant(ShapeContainer shape, DType value) {
// create ROWMAJOR array.
py::array_t<DType> array(shape);
std::fill(array.mutable_data(), array.mutable_data() + array.size(), value);
return array;
}
template <typename DType>
inline py::array_t<DType> zeros(std::vector<long int> shape) {
return constant<DType, std::vector<long int>>(shape, 0);
}
template <typename DType>
py::array_t<DType>
rbbox_iou(py::array_t<DType> box_corners, py::array_t<DType> qbox_corners,
py::array_t<DType> standup_iou, DType standup_thresh) {
namespace bg = boost::geometry;
typedef bg::model::point<DType, 2, bg::cs::cartesian> point_t;
typedef bg::model::polygon<point_t> polygon_t;
polygon_t poly, qpoly;
std::vector<polygon_t> poly_inter, poly_union;
DType inter_area, union_area;
auto box_corners_r = box_corners.template unchecked<3>();
auto qbox_corners_r = qbox_corners.template unchecked<3>();
auto standup_iou_r = standup_iou.template unchecked<2>();
auto N = box_corners_r.shape(0);
auto K = qbox_corners_r.shape(0);
py::array_t<DType> overlaps = zeros<DType>({int(N), int(K)});
auto overlaps_rw = overlaps.template mutable_unchecked<2>();
if (N == 0 || K == 0) {
return overlaps;
}
for (int k = 0; k < K; ++k) {
for (int n = 0; n < N; ++n) {
if (standup_iou_r(n, k) <= standup_thresh)
continue;
bg::append(poly, point_t(box_corners_r(n, 0, 0), box_corners_r(n, 0, 1)));
bg::append(poly, point_t(box_corners_r(n, 1, 0), box_corners_r(n, 1, 1)));
bg::append(poly, point_t(box_corners_r(n, 2, 0), box_corners_r(n, 2, 1)));
bg::append(poly, point_t(box_corners_r(n, 3, 0), box_corners_r(n, 3, 1)));
bg::append(poly, point_t(box_corners_r(n, 0, 0), box_corners_r(n, 0, 1)));
bg::append(qpoly,
point_t(qbox_corners_r(k, 0, 0), qbox_corners_r(k, 0, 1)));
bg::append(qpoly,
point_t(qbox_corners_r(k, 1, 0), qbox_corners_r(k, 1, 1)));
bg::append(qpoly,
point_t(qbox_corners_r(k, 2, 0), qbox_corners_r(k, 2, 1)));
bg::append(qpoly,
point_t(qbox_corners_r(k, 3, 0), qbox_corners_r(k, 3, 1)));
bg::append(qpoly,
point_t(qbox_corners_r(k, 0, 0), qbox_corners_r(k, 0, 1)));
bg::intersection(poly, qpoly, poly_inter);
if (!poly_inter.empty()) {
inter_area = bg::area(poly_inter.front());
bg::union_(poly, qpoly, poly_union);
if (!poly_union.empty()) {
union_area = bg::area(poly_union.front());
overlaps_rw(n, k) = inter_area / union_area;
}
poly_union.clear();
}
poly.clear();
qpoly.clear();
poly_inter.clear();
}
}
return overlaps;
}
template <typename DType>
py::array_t<DType>
rbbox_intersection(py::array_t<DType> box_corners, py::array_t<DType> qbox_corners,
py::array_t<DType> standup_iou, DType standup_thresh) {
namespace bg = boost::geometry;
typedef bg::model::point<DType, 2, bg::cs::cartesian> point_t;
typedef bg::model::polygon<point_t> polygon_t;
polygon_t poly, qpoly;
std::vector<polygon_t> poly_inter, poly_union;
DType inter_area, union_area;
auto box_corners_r = box_corners.template unchecked<3>();
auto qbox_corners_r = qbox_corners.template unchecked<3>();
auto standup_iou_r = standup_iou.template unchecked<2>();
auto N = box_corners_r.shape(0);
auto K = qbox_corners_r.shape(0);
py::array_t<DType> overlaps = zeros<DType>({int(N), int(K)});
auto overlaps_rw = overlaps.template mutable_unchecked<2>();
if (N == 0 || K == 0) {
return overlaps;
}
for (int k = 0; k < K; ++k) {
for (int n = 0; n < N; ++n) {
if (standup_iou_r(n, k) <= standup_thresh)
continue;
bg::append(poly, point_t(box_corners_r(n, 0, 0), box_corners_r(n, 0, 1)));
bg::append(poly, point_t(box_corners_r(n, 1, 0), box_corners_r(n, 1, 1)));
bg::append(poly, point_t(box_corners_r(n, 2, 0), box_corners_r(n, 2, 1)));
bg::append(poly, point_t(box_corners_r(n, 3, 0), box_corners_r(n, 3, 1)));
bg::append(poly, point_t(box_corners_r(n, 0, 0), box_corners_r(n, 0, 1)));
bg::append(qpoly,
point_t(qbox_corners_r(k, 0, 0), qbox_corners_r(k, 0, 1)));
bg::append(qpoly,
point_t(qbox_corners_r(k, 1, 0), qbox_corners_r(k, 1, 1)));
bg::append(qpoly,
point_t(qbox_corners_r(k, 2, 0), qbox_corners_r(k, 2, 1)));
bg::append(qpoly,
point_t(qbox_corners_r(k, 3, 0), qbox_corners_r(k, 3, 1)));
bg::append(qpoly,
point_t(qbox_corners_r(k, 0, 0), qbox_corners_r(k, 0, 1)));
bg::intersection(poly, qpoly, poly_inter);
if (!poly_inter.empty()) {
inter_area = bg::area(poly_inter.front());
overlaps_rw(n, k) = inter_area;
}
poly.clear();
qpoly.clear();
poly_inter.clear();
}
}
return overlaps;
}
} // namespace spconv
#endif
// Copyright 2019 Yan Yan
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef FUSED_SPARSE_CONV_OP_H_
#define FUSED_SPARSE_CONV_OP_H_
#include <cuda_runtime_api.h>
#include <spconv/indice.h>
#include <spconv/reordering.h>
#include <torch/script.h>
#include <torch_utils.h>
#include <utility/timer.h>
namespace spconv {
// torch.jit's doc says only support int64, so we need to convert to int32.
template <typename T>
torch::Tensor fusedIndiceConvBatchNorm(torch::Tensor features, torch::Tensor filters, torch::Tensor bias,
torch::Tensor indicePairs, torch::Tensor indiceNum,
int64_t numActOut, int64_t _inverse, int64_t _subM) {
bool subM = _subM != 0;
bool inverse = _inverse != 0;
auto device = features.device().type();
auto ndim = filters.dim() - 2;
auto kernelVolume = indicePairs.size(0);
auto numInPlanes = features.size(1);
auto numOutPlanes = filters.size(ndim + 1);
auto indicePairNumCpu = indiceNum.to({torch::kCPU});
auto indicePairMaxSizeIter = std::max_element(
indicePairNumCpu.data<int>(), indicePairNumCpu.data<int>() + kernelVolume);
int indicePairMaxOffset = indicePairMaxSizeIter - indicePairNumCpu.data<int>();
int indicePairMaxSize = *indicePairMaxSizeIter;
/*if (_subM){
std::vector<int> indicePairNumVec(indicePairNumCpu.data<int>(), indicePairNumCpu.data<int>() + kernelVolume);
indicePairNumVec.erase(indicePairNumVec.begin() + indicePairMaxOffset);
auto indicePairVecMaxSizeIter = std::max_element(
indicePairNumVec.begin(), indicePairNumVec.end());
indicePairMaxSize = *indicePairVecMaxSizeIter;
}*/
auto options =
torch::TensorOptions().dtype(features.dtype()).device(features.device());
// auto indicePairOptions =
// torch::TensorOptions().dtype(torch::kInt64).device(indicePairs.device());
torch::Tensor output = torch::zeros({numActOut, numOutPlanes}, options).copy_(bias);
torch::Tensor inputBuffer = torch::zeros({indicePairMaxSize, numInPlanes}, options);
torch::Tensor outputBuffer =
torch::zeros({indicePairMaxSize, numOutPlanes}, options);
filters = filters.view({-1, numInPlanes, numOutPlanes});
if (subM) { // the center index of subm conv don't need gather and scatter
// add.
torch::mm_out(output, features, filters[indicePairMaxOffset]);
}
double totalGatherTime = 0;
double totalGEMMTime = 0;
double totalSAddTime = 0;
for (int i = 0; i < kernelVolume; ++i) {
auto nHot = indicePairNumCpu.data<int>()[i];
if (nHot <= 0 || (subM && i == indicePairMaxOffset)) {
continue;
}
// auto timer = spconv::CudaContextTimer<>();
auto outputBufferBlob =
torch::from_blob(outputBuffer.data<T>(), {nHot, numOutPlanes}, options);
auto inputBufferBlob =
torch::from_blob(inputBuffer.data<T>(), {nHot, numInPlanes}, options);
if (device == torch::kCPU) {
functor::SparseGatherFunctor<tv::CPU, T, int> gatherFtor;
gatherFtor(tv::CPU(), tv::torch2tv<T>(inputBuffer),
tv::torch2tv<const T>(features),
tv::torch2tv<const int>(indicePairs).subview(i, inverse), nHot);
} else {
functor::SparseGatherFunctor<tv::GPU, T, int> gatherFtor;
gatherFtor(tv::TorchGPU(), tv::torch2tv<T>(inputBuffer),
tv::torch2tv<const T>(features),
tv::torch2tv<const int>(indicePairs).subview(i, inverse), nHot);
TV_CHECK_CUDA_ERR();
/* slower than SparseGatherFunctor, may due to int->long conversion
auto indicePairLong = indicePairs[i][inverse].to(torch::kInt64);
auto indicePairBlob = torch::from_blob(indicePairLong.data<long>(), {nHot},
indicePairOptions);
torch::index_select_out(inputBufferBlob, features, 0,
indicePairBlob);*/
}
// totalGatherTime += timer.report() / 1000.0;
torch::mm_out(outputBufferBlob, inputBufferBlob, filters[i]);
// totalGEMMTime += timer.report() / 1000.0;
if (device == torch::kCPU) {
functor::SparseScatterAddFunctor<tv::CPU, T, int> scatterFtor;
scatterFtor(tv::CPU(), tv::torch2tv<T>(output),
tv::torch2tv<const T>(outputBuffer),
tv::torch2tv<const int>(indicePairs).subview(i, !inverse), nHot,
true);
} else {
functor::SparseScatterAddFunctor<tv::GPU, T, int> scatterFtor;
scatterFtor(tv::TorchGPU(), tv::torch2tv<T>(output),
tv::torch2tv<const T>(outputBuffer),
tv::torch2tv<const int>(indicePairs).subview(i, !inverse), nHot,
true);
TV_CHECK_CUDA_ERR();
}
// totalSAddTime += timer.report() / 1000.0;
}
// std::cout << "gather time " << totalGatherTime << std::endl;
// std::cout << "gemm time " << totalGEMMTime << std::endl;
// std::cout << "scatteradd time " << totalSAddTime << std::endl;
return output;
}
} // namespace spconv
#endif
// Copyright 2019 Yan Yan
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPCONV_GEOMETRY_H_
#define SPCONV_GEOMETRY_H_
#include <iostream>
#include <limits>
#include <tensorview/tensorview.h>
namespace spconv {
template <typename Index, unsigned NDim>
TV_HOST_DEVICE Index getValidOutPos(const Index *input_pos,
const Index *kernelSize,
const Index *stride, const Index *padding,
const Index *dilation,
const Index *outSpatialShape, Index *out) {
Index lowers[NDim];
Index uppers[NDim];
Index counter[NDim];
Index counterSize[NDim];
Index pointCounter = 0;
Index val;
Index numPoints = 1;
Index m, offset;
bool valid = false;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
lowers[i] = (input_pos[i] - (kernelSize[i] - 1) * dilation[i] - 1 +
stride[i] + padding[i]) /
stride[i];
uppers[i] = (input_pos[i] + padding[i]) / stride[i];
}
#pragma unroll
for (unsigned i = 0; i < NDim; ++i) {
counterSize[i] = ((uppers[i] - lowers[i]) / dilation[i] + 1);
numPoints *= counterSize[i];
}
#pragma unroll
for (int i = 0; i < NDim; ++i) {
counter[i] = 0;
}
for (int i = 0; i < numPoints; ++i) {
valid = true;
m = 1;
offset = 0;
#pragma unroll
for (int j = NDim - 1; j >= 0; --j) {
val = uppers[j] - counter[j] * dilation[j];
out[pointCounter * (NDim + 1) + j] = val;
if (val < 0 || (val > outSpatialShape[j] - 1)) {
valid = false;
// break;
}
offset += m * (input_pos[j] - val * stride[j] + padding[j]) / dilation[j];
m *= kernelSize[j];
}
out[pointCounter * (NDim + 1) + NDim] = offset;
if (valid)
++pointCounter;
counter[NDim - 1] += 1;
#pragma unroll
for (int c = NDim - 1; c >= 0; --c) {
if (counter[c] == counterSize[c] && c > 0) {
counter[c - 1] += 1;
counter[c] = 0;
}
}
}
return pointCounter;
}
template <typename Index, unsigned NDim>
TV_HOST_DEVICE Index getValidOutPosTranspose(
const Index *input_pos, const Index *kernelSize, const Index *stride,
const Index *padding, const Index *dilation, const Index *outSpatialShape,
Index *out) {
Index lowers[NDim];
Index uppers[NDim];
Index counter[NDim];
Index counterSize[NDim];
Index pointCounter = 0;
Index val;
Index numPoints = 1;
Index m, offset;
bool valid = false;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
lowers[i] = input_pos[i] * stride[i] - padding[i];
uppers[i] = lowers[i] + (kernelSize[i] - 1) * dilation[i];
}
#pragma unroll
for (unsigned i = 0; i < NDim; ++i) {
counterSize[i] = ((uppers[i] - lowers[i]) / dilation[i] + 1);
numPoints *= counterSize[i];
}
#pragma unroll
for (int i = 0; i < NDim; ++i) {
counter[i] = 0;
}
for (int i = 0; i < numPoints; ++i) {
valid = true;
m = 1;
offset = 0;
#pragma unroll
for (int j = NDim - 1; j >= 0; --j) {
val = uppers[j] - counter[j] * dilation[j];
out[pointCounter * (NDim + 1) + j] = val;
if (val < 0 || (val > outSpatialShape[j] - 1)) {
valid = false;
// break;
}
offset += m * (val - lowers[j]) / dilation[j];
m *= kernelSize[j];
}
out[pointCounter * (NDim + 1) + NDim] = offset;
if (valid)
++pointCounter;
counter[NDim - 1] += 1;
#pragma unroll
for (int c = NDim - 1; c >= 0; --c) {
if (counter[c] == counterSize[c] && c > 0) {
counter[c - 1] += 1;
counter[c] = 0;
}
}
}
return pointCounter;
}
template <typename Index, typename IndexGrid, unsigned NDim>
Index getIndicePairsConv(tv::TensorView<const Index> indicesIn,
tv::TensorView<Index> indicesOut,
tv::TensorView<IndexGrid> gridsOut,
tv::TensorView<Index> indicePairs,
tv::TensorView<Index> indiceNum,
const Index *kernelSize, const Index *stride,
const Index *padding, const Index *dilation,
const Index *outSpatialShape) {
// indicesOut: num_active * kernelVolume * (NDim + 1)
Index numAct = 0;
auto numActIn = indicesIn.dim(0);
Index batchIdx = 0;
Index spatialVolume = 1;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
spatialVolume *= outSpatialShape[i];
}
Index kernelVolume = 1;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
kernelVolume *= kernelSize[i];
}
Index numValidPoints = 0;
std::vector<Index> validPoints_(kernelVolume * (NDim + 1));
Index* validPoints = validPoints_.data();
Index *pointPtr = nullptr;
for (int j = 0; j < numActIn; ++j) {
batchIdx = indicesIn(j, 0);
numValidPoints = getValidOutPos<Index, NDim>(
indicesIn.data() + j * (NDim + 1) + 1, kernelSize, stride, padding,
dilation, outSpatialShape, validPoints);
for (Index i = 0; i < numValidPoints; ++i) {
pointPtr = validPoints + i * (NDim + 1);
auto offset = pointPtr[NDim];
auto index = tv::rowArrayIdx<Index, NDim>(pointPtr, outSpatialShape) +
spatialVolume * batchIdx;
if (gridsOut[index] == -1) {
for (unsigned k = 1; k < NDim + 1; ++k) {
indicesOut(numAct, k) = pointPtr[k - 1];
}
indicesOut(numAct, 0) = batchIdx;
gridsOut[index] = numAct++;
}
// indicePairs: [K, 2, L]
indicePairs(offset, 0, indiceNum[offset]) = j;
indicePairs(offset, 1, indiceNum[offset]++) = gridsOut[index];
}
}
return numAct;
}
template <typename Index, typename IndexGrid, unsigned NDim>
Index getIndicePairsDeConv(tv::TensorView<const Index> indicesIn,
tv::TensorView<Index> indicesOut,
tv::TensorView<IndexGrid> gridsOut,
tv::TensorView<Index> indicePairs,
tv::TensorView<Index> indiceNum,
const Index *kernelSize, const Index *stride,
const Index *padding, const Index *dilation,
const Index *outSpatialShape) {
Index numAct = 0;
auto numActIn = indicesIn.dim(0);
Index batchIdx = 0;
Index spatialVolume = 1;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
spatialVolume *= outSpatialShape[i];
}
Index kernelVolume = 1;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
kernelVolume *= kernelSize[i];
}
Index numValidPoints = 0;
std::vector<Index> validPoints_(kernelVolume * (NDim + 1));
Index* validPoints = validPoints_.data();
Index *pointPtr = nullptr;
for (int j = 0; j < numActIn; ++j) {
batchIdx = indicesIn(j, 0);
numValidPoints = getValidOutPosTranspose<Index, NDim>(
indicesIn.data() + j * (NDim + 1) + 1, kernelSize, stride, padding,
dilation, outSpatialShape, validPoints);
for (Index i = 0; i < numValidPoints; ++i) {
pointPtr = validPoints + i * (NDim + 1);
auto offset = pointPtr[NDim];
auto index = tv::rowArrayIdx<Index, NDim>(pointPtr, outSpatialShape) +
spatialVolume * batchIdx;
if (gridsOut[index] == -1) {
for (unsigned k = 1; k < NDim + 1; ++k) {
indicesOut(numAct, k) = pointPtr[k - 1];
}
indicesOut(numAct, 0) = batchIdx;
gridsOut[index] = numAct++;
}
// indicePairs: [K, 2, L]
indicePairs(offset, 0, indiceNum[offset]) = j;
indicePairs(offset, 1, indiceNum[offset]++) = gridsOut[index];
}
}
return numAct;
}
template <typename Index, typename IndexGrid, unsigned NDim>
Index getIndicePairsSubM(tv::TensorView<const Index> indicesIn,
tv::TensorView<IndexGrid> gridsOut,
tv::TensorView<Index> indicePairs,
tv::TensorView<Index> indiceNum,
const Index *const kernelSize,
const Index *const stride, const Index *const padding,
const Index *dilation, const Index *const outSpatialShape) {
Index numAct = 0;
auto numActIn = indicesIn.dim(0);
Index batchIdx = 0;
Index spatialVolume = 1;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
spatialVolume *= outSpatialShape[i];
}
Index kernelVolume = 1;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
kernelVolume *= kernelSize[i];
}
Index numValidPoints = 0;
// Index validPoints[kernelVolume * (NDim + 1)];
std::vector<Index> validPoints_(kernelVolume * (NDim + 1));
Index* validPoints = validPoints_.data();
Index *pointPtr = nullptr;
Index index = 0;
for (int j = 0; j < numActIn; ++j) {
index = tv::rowArrayIdx<Index, NDim>(indicesIn.data() + j * (NDim + 1) + 1,
outSpatialShape) +
spatialVolume * indicesIn(j, 0);
gridsOut[index] = j;
}
for (int j = 0; j < numActIn; ++j) {
numValidPoints = getValidOutPos<Index, NDim>(
indicesIn.data() + j * (NDim + 1) + 1, kernelSize, stride, padding,
dilation, outSpatialShape, validPoints);
for (Index i = 0; i < numValidPoints; ++i) {
pointPtr = validPoints + i * (NDim + 1);
auto offset = pointPtr[NDim];
index = tv::rowArrayIdx<Index, NDim>(pointPtr, outSpatialShape) +
spatialVolume * indicesIn(j, 0);
if (gridsOut[index] > -1) {
indicePairs(offset, 0, indiceNum[offset]) = j;
indicePairs(offset, 1, indiceNum[offset]++) = gridsOut[index];
}
}
}
return numActIn;
}
} // namespace spconv
#endif
// Copyright 2019 Yan Yan
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef INDICE_CU_H_
#define INDICE_CU_H_
#include <tensorview/tensorview.h>
#include <tensorview/helper_kernel.cu.h>
#include <spconv/geometry.h>
namespace spconv {
template <typename Index, typename IndexGrid, unsigned NDim,
int KernelMaxVolume = 256>
__global__ void prepareIndicePairsKernel(
tv::TensorView<const Index> indicesIn, tv::TensorView<Index> indicesOut,
tv::TensorView<IndexGrid> gridsOut, tv::TensorView<Index> indicePairs,
tv::TensorView<Index> indiceNum, tv::TensorView<Index> indicePairUnique,
const tv::SimpleVector<Index, NDim> kernelSize,
const tv::SimpleVector<Index, NDim> stride,
const tv::SimpleVector<Index, NDim> padding,
const tv::SimpleVector<Index, NDim> dilation,
const tv::SimpleVector<Index, NDim> outSpatialShape) {
auto numActIn = indicesIn.dim(0);
Index spatialVolume = 1;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
spatialVolume *= outSpatialShape[i];
}
Index kernelVolume = 1;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
kernelVolume *= kernelSize[i];
}
Index numValidPoints = 0;
Index validPoints[KernelMaxVolume * (NDim + 1)];
Index *pointPtr = nullptr;
auto indicePairsDim2 = indicePairs.dim(2);
Index index;
for (int ix : tv::KernelLoopX<int>(numActIn)) {
numValidPoints = getValidOutPos<Index, NDim>(
indicesIn.data() + ix * (NDim + 1) + 1, kernelSize.data(),
stride.data(), padding.data(), dilation.data(), outSpatialShape.data(),
validPoints);
for (Index i = 0; i < numValidPoints; ++i) {
pointPtr = validPoints + i * (NDim + 1);
auto offset = pointPtr[NDim];
auto oldNum = atomicAdd(indiceNum.data() + offset, Index(1));
indicePairs(offset, 0, oldNum) = ix;
index = tv::rowArrayIdx<Index, NDim>(pointPtr, outSpatialShape.data()) +
spatialVolume * indicesIn(ix, 0);
indicePairs(offset, 1, oldNum) = index;
indicePairUnique[offset * indicePairsDim2 + oldNum] = index;
}
}
}
template <typename Index, typename IndexGrid, unsigned NDim,
int KernelMaxVolume = 256>
__global__ void prepareDeConvIndicePairsKernel(
tv::TensorView<const Index> indicesIn, tv::TensorView<Index> indicesOut,
tv::TensorView<IndexGrid> gridsOut, tv::TensorView<Index> indicePairs,
tv::TensorView<Index> indiceNum, tv::TensorView<Index> indicePairUnique,
const tv::SimpleVector<Index, NDim> kernelSize,
const tv::SimpleVector<Index, NDim> stride,
const tv::SimpleVector<Index, NDim> padding,
const tv::SimpleVector<Index, NDim> dilation,
const tv::SimpleVector<Index, NDim> outSpatialShape) {
auto numActIn = indicesIn.dim(0);
Index spatialVolume = 1;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
spatialVolume *= outSpatialShape[i];
}
Index kernelVolume = 1;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
kernelVolume *= kernelSize[i];
}
Index numValidPoints = 0;
Index validPoints[KernelMaxVolume * (NDim + 1)];
Index *pointPtr = nullptr;
auto indicePairsDim2 = indicePairs.dim(2);
Index index;
for (int ix : tv::KernelLoopX<int>(numActIn)) {
numValidPoints = getValidOutPosTranspose<Index, NDim>(
indicesIn.data() + ix * (NDim + 1) + 1, kernelSize.data(),
stride.data(), padding.data(), dilation.data(), outSpatialShape.data(),
validPoints);
for (Index i = 0; i < numValidPoints; ++i) {
pointPtr = validPoints + i * (NDim + 1);
auto offset = pointPtr[NDim];
auto oldNum = atomicAdd(indiceNum.data() + offset, Index(1));
indicePairs(offset, 0, oldNum) = ix;
index = tv::rowArrayIdx<Index, NDim>(pointPtr, outSpatialShape.data()) +
spatialVolume * indicesIn(ix, 0);
indicePairs(offset, 1, oldNum) = index;
indicePairUnique[offset * indicePairsDim2 + oldNum] = index;
}
}
}
template <typename Index, typename IndexGrid, unsigned NDim>
__global__ void assignGridAndIndiceOutKernel(
tv::TensorView<Index> indicesOut, tv::TensorView<IndexGrid> gridsOut,
int numAct, tv::TensorView<Index> indicePairs,
tv::TensorView<Index> indicePairUnique,
const tv::SimpleVector<Index, NDim> outSpatialShape, int batchSize) {
Index index;
auto indicesOutPtr = indicesOut.data();
for (int ix : tv::KernelLoopX<int>(numAct)) {
index = indicePairUnique[ix];
gridsOut[index] = ix;
index = tv::rowArrayIdxInv<Index, NDim>(
index, indicesOutPtr + ix * (NDim + 1) + 1, outSpatialShape.data());
indicesOut[ix * (NDim + 1)] = index % batchSize;
}
}
template <typename Index, typename IndexGrid, unsigned NDim>
__global__ void
assignIndicePairsKernel(tv::TensorView<Index> indicesOut,
tv::TensorView<IndexGrid> gridsOut, int numActIn,
tv::TensorView<Index> indicePairs,
tv::TensorView<Index> indicePairUnique,
const tv::SimpleVector<Index, NDim> outSpatialShape) {
Index index;
int kernelVolume = indicePairs.dim(0);
for (int ix : tv::KernelLoopX<int>(numActIn)) {
for (int i = 0; i < kernelVolume; ++i) {
index = indicePairs(i, 1, ix);
if (index > -1) {
indicePairs(i, 1, ix) = gridsOut[index];
}
}
}
}
template <typename Index, typename IndexGrid, unsigned NDim>
__global__ void
prepareSubMGridKernel(tv::TensorView<const Index> indicesIn,
tv::TensorView<IndexGrid> gridsOut,
const tv::SimpleVector<Index, NDim> outSpatialShape) {
auto numActIn = indicesIn.dim(0);
Index spatialVolume = 1;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
spatialVolume *= outSpatialShape[i];
}
Index index = 0;
for (int ix : tv::KernelLoopX<int>(numActIn)) {
index = tv::rowArrayIdx<Index, NDim>(indicesIn.data() + ix * (NDim + 1) + 1,
outSpatialShape.data()) +
spatialVolume * indicesIn(ix, 0);
gridsOut[index] = ix;
}
}
template <typename Index, typename IndexGrid, unsigned NDim,
int KernelMaxVolume = 256>
__global__ void getSubMIndicePairsKernel(
tv::TensorView<const Index> indicesIn, tv::TensorView<IndexGrid> gridsOut,
tv::TensorView<Index> indicePairs, tv::TensorView<Index> indiceNum,
const tv::SimpleVector<Index, NDim> kernelSize,
const tv::SimpleVector<Index, NDim> stride,
const tv::SimpleVector<Index, NDim> padding,
const tv::SimpleVector<Index, NDim> dilation,
const tv::SimpleVector<Index, NDim> outSpatialShape) {
auto numActIn = indicesIn.dim(0);
Index spatialVolume = 1;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
spatialVolume *= outSpatialShape[i];
}
Index numValidPoints = 0;
Index validPoints[KernelMaxVolume * (NDim + 1)];
Index *pointPtr = nullptr;
Index index = 0;
for (int ix : tv::KernelLoopX<int>(numActIn)) {
numValidPoints = getValidOutPos<Index, NDim>(
indicesIn.data() + ix * (NDim + 1) + 1, kernelSize.data(),
stride.data(), padding.data(), dilation.data(), outSpatialShape.data(),
validPoints);
for (int i = 0; i < numValidPoints; ++i) {
pointPtr = validPoints + i * (NDim + 1);
auto offset = pointPtr[NDim];
index = tv::rowArrayIdx<Index, NDim>(pointPtr, outSpatialShape.data()) +
spatialVolume * indicesIn(ix, 0);
if (gridsOut[index] > -1) {
auto oldNum = atomicAdd(indiceNum.data() + offset, Index(1));
indicePairs(offset, 1, oldNum) = gridsOut[index];
indicePairs(offset, 0, oldNum) = ix;
}
}
}
}
template <typename Index, typename IndexGrid, unsigned NDim>
__global__ void resetGridKernel(const Index *indicePairUnique,
tv::TensorView<IndexGrid> gridsOut,
int numAct) {
for (int ix : tv::KernelLoopX<int>(numAct)) {
gridsOut[indicePairUnique[ix]] = -1;
}
}
template <typename Index, typename IndexGrid, unsigned NDim>
__global__ void
resetGridSubMKernel(const Index *indices, tv::TensorView<IndexGrid> gridsOut,
const tv::SimpleVector<Index, NDim> outSpatialShape,
int numAct) {
int outSpatialShapeReg[NDim];
for (int i = 0; i < NDim; ++i) {
outSpatialShapeReg[i] = outSpatialShape[i];
}
Index spatialVolume = 1;
auto indsPtr = indices;
#pragma unroll
for (int i = 0; i < NDim; ++i) {
spatialVolume *= outSpatialShape[i];
}
Index index;
for (int ix : tv::KernelLoopX<int>(numAct)) {
indsPtr = indices + ix * (NDim + 1);
index = tv::rowArrayIdx<Index, NDim>(indsPtr + 1, outSpatialShapeReg);
gridsOut[index + spatialVolume * indsPtr[0]] = -1;
}
}
} // namespace spconv
#endif
// Copyright 2019 Yan Yan
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPARSE_CONV_INDICE_FUNCTOR_H_
#define SPARSE_CONV_INDICE_FUNCTOR_H_
#include <tensorview/tensorview.h>
namespace spconv
{
namespace functor
{
template <typename Device, typename Index, typename IndexGrid, unsigned NDim>
struct CreateConvIndicePairFunctorP1
{
Index operator()(
const Device& d, tv::TensorView<const Index> indicesIn,
tv::TensorView<Index> indicesOut, tv::TensorView<IndexGrid> gridsOut,
tv::TensorView<Index> indicePairs, tv::TensorView<Index> indiceNum,
tv::TensorView<Index> indicePairUnique,
const tv::SimpleVector<Index, NDim> kernelSize,
const tv::SimpleVector<Index, NDim> stride,
const tv::SimpleVector<Index, NDim> padding,
const tv::SimpleVector<Index, NDim> dilation,
const tv::SimpleVector<Index, NDim> outSpatialShape, bool transpose);
};
template <typename Device, typename Index, typename IndexGrid, unsigned NDim>
struct CreateConvIndicePairFunctorP2
{
Index operator()(
const Device& d, tv::TensorView<const Index> indicesIn,
tv::TensorView<Index> indicesOut, tv::TensorView<IndexGrid> gridsOut,
tv::TensorView<Index> indicePairs, tv::TensorView<Index> indiceNum,
tv::TensorView<Index> indicePairUnique,
const tv::SimpleVector<Index, NDim> outSpatialShape, bool transpose,
bool resetGrid=false);
};
template <typename Device, typename Index, typename IndexGrid, unsigned NDim>
struct CreateConvIndicePairFunctor
{
Index operator()(
const Device& d, tv::TensorView<const Index> indicesIn,
tv::TensorView<Index> indicesOut, tv::TensorView<IndexGrid> gridsOut,
tv::TensorView<Index> indicePairs, tv::TensorView<Index> indiceNum,
const tv::SimpleVector<Index, NDim> kernelSize,
const tv::SimpleVector<Index, NDim> stride,
const tv::SimpleVector<Index, NDim> padding,
const tv::SimpleVector<Index, NDim> dilation,
const tv::SimpleVector<Index, NDim> outSpatialShape, bool transpose, bool resetGrid=false);
};
template <typename Device, typename Index, typename IndexGrid, unsigned NDim>
struct CreateSubMIndicePairFunctor
{
Index operator()(
const Device& d, tv::TensorView<const Index> indicesIn, tv::TensorView<IndexGrid> gridsOut,
tv::TensorView<Index> indicePairs, tv::TensorView<Index> indiceNum,
const tv::SimpleVector<Index, NDim> kernelSize,
const tv::SimpleVector<Index, NDim> stride,
const tv::SimpleVector<Index, NDim> padding,
const tv::SimpleVector<Index, NDim> dilation,
const tv::SimpleVector<Index, NDim> outSpatialShape, bool transpose, bool resetGrid=false);
};
} // namespace functor
} // namespace spconv
#endif
// Copyright 2019 Yan Yan
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SPARSE_MAXPOOL_FUNCTOR_H_
#define SPARSE_MAXPOOL_FUNCTOR_H_
#include <tensorview/tensorview.h>
namespace spconv
{
namespace functor
{
template <typename Device, typename T, typename Index>
struct SparseMaxPoolForwardFunctor
{
void operator()(const Device& d, tv::TensorView<T> outFeatures,
tv::TensorView<const T> inFeatures,
tv::TensorView<const Index> indices, int size);
};
template <typename Device, typename T, typename Index>
struct SparseMaxPoolBackwardFunctor
{
void operator()(const Device& d, tv::TensorView<const T> outFeatures,
tv::TensorView<const T> inFeatures,
tv::TensorView<const T> dout,
tv::TensorView<T> din,
tv::TensorView<const Index> indices, int size);
};
} // namespace functor
} // namespace spconv
#endif
#ifndef MP_HELPER_H_
#define MP_HELPER_H_
#include <type_traits>
#include <utility>
namespace spconv {
template <class... T> struct mp_list {};
template <class T, T... I>
using mp_list_c = mp_list<std::integral_constant<T, I>...>;
namespace detail {
template <class... T, class F>
constexpr F mp_for_each_impl(mp_list<T...>, F &&f) {
return std::initializer_list<int>{(f(T()), 0)...}, std::forward<F>(f);
}
template <class F> constexpr F mp_for_each_impl(mp_list<>, F &&f) {
return std::forward<F>(f);
}
} // namespace detail
namespace detail {
template <class A, template <class...> class B> struct mp_rename_impl {
// An error "no type named 'type'" here means that the first argument to
// mp_rename is not a list
};
template <template <class...> class A, class... T, template <class...> class B>
struct mp_rename_impl<A<T...>, B> {
using type = B<T...>;
};
} // namespace detail
template <class A, template <class...> class B>
using mp_rename = typename detail::mp_rename_impl<A, B>::type;
template <class L, class F> constexpr F mp_for_each(F &&f) {
return detail::mp_for_each_impl(mp_rename<L, mp_list>(), std::forward<F>(f));
}
} // namespace spconv
#endif
// Copyright 2019 Yan Yan
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef NMS_CPU_H
#define NMS_CPU_H
#include <pybind11/pybind11.h>
// must include pybind11/stl.h if using containers in STL in arguments.
#include <algorithm>
#include <boost/geometry.hpp>
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
#include <vector>
#include "box_iou.h"
#include "nms_gpu.h"
namespace spconv {
namespace py = pybind11;
using namespace pybind11::literals;
template <typename DType>
std::vector<int> non_max_suppression_cpu(py::array_t<DType> boxes,
py::array_t<int> order, DType thresh,
DType eps = 0) {
auto ndets = boxes.shape(0);
auto boxes_r = boxes.template unchecked<2>();
auto order_r = order.template unchecked<1>();
auto suppressed = zeros<int>({int(ndets)});
auto suppressed_rw = suppressed.template mutable_unchecked<1>();
auto area = zeros<DType>({int(ndets)});
auto area_rw = area.template mutable_unchecked<1>();
// get areas
for (int i = 0; i < ndets; ++i) {
area_rw(i) = (boxes_r(i, 2) - boxes_r(i, 0) + eps) *
(boxes_r(i, 3) - boxes_r(i, 1) + eps);
}
std::vector<int> keep;
int i, j;
DType xx1, xx2, w, h, inter, ovr;
for (int _i = 0; _i < ndets; ++_i) {
i = order_r(_i);
if (suppressed_rw(i) == 1)
continue;
keep.push_back(i);
for (int _j = _i + 1; _j < ndets; ++_j) {
j = order_r(_j);
if (suppressed_rw(j) == 1)
continue;
xx2 = std::min(boxes_r(i, 2), boxes_r(j, 2));
xx1 = std::max(boxes_r(i, 0), boxes_r(j, 0));
w = xx2 - xx1 + eps;
if (w > 0) {
xx2 = std::min(boxes_r(i, 3), boxes_r(j, 3));
xx1 = std::max(boxes_r(i, 1), boxes_r(j, 1));
h = xx2 - xx1 + eps;
if (h > 0) {
inter = w * h;
ovr = inter / (area_rw(i) + area_rw(j) - inter);
if (ovr >= thresh)
suppressed_rw(j) = 1;
}
}
}
}
return keep;
}
template <typename DType>
std::vector<int> rotate_non_max_suppression_cpu(py::array_t<DType> box_corners,
py::array_t<int> order,
py::array_t<DType> standup_iou,
DType thresh) {
auto ndets = box_corners.shape(0);
auto box_corners_r = box_corners.template unchecked<3>();
auto order_r = order.template unchecked<1>();
auto suppressed = zeros<int>({int(ndets)});
auto suppressed_rw = suppressed.template mutable_unchecked<1>();
auto standup_iou_r = standup_iou.template unchecked<2>();
std::vector<int> keep;
int i, j;
namespace bg = boost::geometry;
typedef bg::model::point<DType, 2, bg::cs::cartesian> point_t;
typedef bg::model::polygon<point_t> polygon_t;
polygon_t poly, qpoly;
std::vector<polygon_t> poly_inter, poly_union;
DType inter_area, union_area, overlap;
for (int _i = 0; _i < ndets; ++_i) {
i = order_r(_i);
if (suppressed_rw(i) == 1)
continue;
keep.push_back(i);
for (int _j = _i + 1; _j < ndets; ++_j) {
j = order_r(_j);
if (suppressed_rw(j) == 1)
continue;
if (standup_iou_r(i, j) <= 0.0)
continue;
// std::cout << "pre_poly" << std::endl;
try {
bg::append(poly,
point_t(box_corners_r(i, 0, 0), box_corners_r(i, 0, 1)));
bg::append(poly,
point_t(box_corners_r(i, 1, 0), box_corners_r(i, 1, 1)));
bg::append(poly,
point_t(box_corners_r(i, 2, 0), box_corners_r(i, 2, 1)));
bg::append(poly,
point_t(box_corners_r(i, 3, 0), box_corners_r(i, 3, 1)));
bg::append(poly,
point_t(box_corners_r(i, 0, 0), box_corners_r(i, 0, 1)));
bg::append(qpoly,
point_t(box_corners_r(j, 0, 0), box_corners_r(j, 0, 1)));
bg::append(qpoly,
point_t(box_corners_r(j, 1, 0), box_corners_r(j, 1, 1)));
bg::append(qpoly,
point_t(box_corners_r(j, 2, 0), box_corners_r(j, 2, 1)));
bg::append(qpoly,
point_t(box_corners_r(j, 3, 0), box_corners_r(j, 3, 1)));
bg::append(qpoly,
point_t(box_corners_r(j, 0, 0), box_corners_r(j, 0, 1)));
bg::intersection(poly, qpoly, poly_inter);
} catch (const std::exception &e) {
std::cout << "box i corners:" << std::endl;
for (int k = 0; k < 4; ++k) {
std::cout << box_corners_r(i, k, 0) << " " << box_corners_r(i, k, 1)
<< std::endl;
}
std::cout << "box j corners:" << std::endl;
for (int k = 0; k < 4; ++k) {
std::cout << box_corners_r(j, k, 0) << " " << box_corners_r(j, k, 1)
<< std::endl;
}
// throw e;
continue;
}
// std::cout << "post_poly" << std::endl;
// std::cout << "post_intsec" << std::endl;
if (!poly_inter.empty()) {
inter_area = bg::area(poly_inter.front());
// std::cout << "pre_union" << " " << inter_area << std::endl;
bg::union_(poly, qpoly, poly_union);
/*
if (poly_union.empty()){
std::cout << "intsec area:" << " " << inter_area << std::endl;
std::cout << "box i corners:" << std::endl;
for(int k = 0; k < 4; ++k){
std::cout << box_corners_r(i, k, 0) << " " << box_corners_r(i,
k, 1) << std::endl;
}
std::cout << "box j corners:" << std::endl;
for(int k = 0; k < 4; ++k){
std::cout << box_corners_r(j, k, 0) << " " << box_corners_r(j,
k, 1) << std::endl;
}
}*/
// std::cout << "post_union" << poly_union.empty() << std::endl;
if (!poly_union.empty()) { // ignore invalid box
union_area = bg::area(poly_union.front());
// std::cout << "post union area" << std::endl;
// std::cout << union_area << "debug" << std::endl;
overlap = inter_area / union_area;
if (overlap >= thresh)
suppressed_rw(j) = 1;
poly_union.clear();
}
}
poly.clear();
qpoly.clear();
poly_inter.clear();
}
}
return keep;
}
constexpr int const threadsPerBlock = sizeof(unsigned long long) * 8;
template <typename DType>
int non_max_suppression(py::array_t<DType> boxes, py::array_t<int> keep_out,
DType nms_overlap_thresh, int device_id) {
py::buffer_info info = boxes.request();
auto boxes_ptr = static_cast<DType *>(info.ptr);
py::buffer_info info_k = keep_out.request();
auto keep_out_ptr = static_cast<int *>(info_k.ptr);
return _nms_gpu<DType, threadsPerBlock>(keep_out_ptr, boxes_ptr,
boxes.shape(0), boxes.shape(1),
nms_overlap_thresh, device_id);
}
} // namespace spconv
#endif
// Copyright 2019 Yan Yan
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef NMS_FUNCTOR_H_
#define NMS_FUNCTOR_H_
#include <tensorview/tensorview.h>
namespace spconv
{
namespace functor
{
template <typename Device, typename T, typename Index>
struct NonMaxSupressionFunctor
{
Index operator()(const Device& d, tv::TensorView<Index> keep,
tv::TensorView<const T> boxes,
T threshold, T eps);
};
template <typename Device, typename T, typename Index>
struct rotateNonMaxSupressionFunctor
{
Index operator()(const Device& d, tv::TensorView<Index> keep,
tv::TensorView<const T> boxCorners,
tv::TensorView<const T> standupIoU, T threshold);
};
} // namespace functor
} // namespace spconv
#endif
// Copyright 2019 Yan Yan
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
template <typename DType, int BLOCK_THREADS>
int _nms_gpu(int *keep_out, const DType *boxes_host, int boxes_num,
int boxes_dim, DType nms_overlap_thresh, int device_id);
// Copyright 2019 Yan Yan
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef NMS_TORCH_OP_H_
#define NMS_TORCH_OP_H_
#include <cuda_runtime_api.h>
#include <spconv/indice.h>
#include <spconv/reordering.h>
#include <torch/script.h>
#include <torch_utils.h>
#include <utility/timer.h>
#include <spconv/nms_functor.h>
namespace spconv {
// torch.jit's doc says only support int64, so we need to convert to int32.
template <typename T>
torch::Tensor
nonMaxSuppression(torch::Tensor boxes, torch::Tensor scores, int64_t preMaxSize,
int64_t postMaxSize, double thresh, double eps) {
// auto timer = spconv::CudaContextTimer<>();
tv::check_torch_dtype<T>(boxes);
auto resOptions =
torch::TensorOptions().dtype(torch::kInt64).device(boxes.device());
if (boxes.size(0) == 0){
return torch::zeros({0}, resOptions);
}
torch::Tensor indices;
if (preMaxSize > 0){
auto numKeepedScores = scores.size(0);
preMaxSize = std::min(numKeepedScores, preMaxSize);
auto res = torch::topk(scores, preMaxSize);
indices = std::get<1>(res);
boxes = torch::index_select(boxes, 0, indices);
}else{
indices = std::get<1>(torch::sort(scores));
boxes = torch::index_select(boxes, 0, indices);
}
if (boxes.size(0) == 0)
return torch::zeros({0}, resOptions);
auto keep = torch::zeros({boxes.size(0)}, resOptions);
int64_t keepNum = 0;
if (boxes.device().type() == torch::kCPU) {
auto nmsFunctor = functor::NonMaxSupressionFunctor<tv::CPU, T, int64_t>();
keepNum = nmsFunctor(tv::CPU(), tv::torch2tv<int64_t>(keep),
tv::torch2tv<const T>(boxes), T(thresh), T(eps));
}else{
TV_ASSERT_RT_ERR(false, "not implemented");
}
if (postMaxSize <= 0){
postMaxSize = keepNum;
}
// std::cout << keep << std::endl;
keep = keep.slice(0, 0, std::min(keepNum, postMaxSize));
if (preMaxSize > 0){
return torch::index_select(indices, 0, keep);
}
return keep;
}
} // namespace spconv
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment