Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
mmdetection3d
Commits
cbc2491f
Unverified
Commit
cbc2491f
authored
Oct 13, 2021
by
Tai-Wang
Committed by
GitHub
Oct 13, 2021
Browse files
Add code-spell pre-commit hook and fix typos (#995)
parent
6b1602f1
Changes
79
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
55 additions
and
55 deletions
+55
-55
mmdet3d/datasets/pipelines/transforms_3d.py
mmdet3d/datasets/pipelines/transforms_3d.py
+11
-11
mmdet3d/datasets/waymo_dataset.py
mmdet3d/datasets/waymo_dataset.py
+1
-1
mmdet3d/models/backbones/nostem_regnet.py
mmdet3d/models/backbones/nostem_regnet.py
+1
-1
mmdet3d/models/dense_heads/anchor_free_mono3d_head.py
mmdet3d/models/dense_heads/anchor_free_mono3d_head.py
+1
-1
mmdet3d/models/dense_heads/centerpoint_head.py
mmdet3d/models/dense_heads/centerpoint_head.py
+4
-4
mmdet3d/models/dense_heads/fcos_mono3d_head.py
mmdet3d/models/dense_heads/fcos_mono3d_head.py
+3
-3
mmdet3d/models/dense_heads/groupfree3d_head.py
mmdet3d/models/dense_heads/groupfree3d_head.py
+2
-2
mmdet3d/models/dense_heads/parta2_rpn_head.py
mmdet3d/models/dense_heads/parta2_rpn_head.py
+1
-1
mmdet3d/models/dense_heads/smoke_mono3d_head.py
mmdet3d/models/dense_heads/smoke_mono3d_head.py
+17
-17
mmdet3d/models/dense_heads/train_mixins.py
mmdet3d/models/dense_heads/train_mixins.py
+1
-1
mmdet3d/models/dense_heads/vote_head.py
mmdet3d/models/dense_heads/vote_head.py
+1
-1
mmdet3d/models/detectors/base.py
mmdet3d/models/detectors/base.py
+1
-1
mmdet3d/models/detectors/mvx_two_stage.py
mmdet3d/models/detectors/mvx_two_stage.py
+1
-1
mmdet3d/models/model_utils/transformer.py
mmdet3d/models/model_utils/transformer.py
+1
-1
mmdet3d/models/necks/dla_neck.py
mmdet3d/models/necks/dla_neck.py
+1
-1
mmdet3d/models/roi_heads/bbox_heads/h3d_bbox_head.py
mmdet3d/models/roi_heads/bbox_heads/h3d_bbox_head.py
+2
-2
mmdet3d/models/roi_heads/bbox_heads/parta2_bbox_head.py
mmdet3d/models/roi_heads/bbox_heads/parta2_bbox_head.py
+1
-1
mmdet3d/models/roi_heads/mask_heads/primitive_head.py
mmdet3d/models/roi_heads/mask_heads/primitive_head.py
+2
-2
mmdet3d/models/voxel_encoders/pillar_encoder.py
mmdet3d/models/voxel_encoders/pillar_encoder.py
+1
-1
mmdet3d/models/voxel_encoders/voxel_encoder.py
mmdet3d/models/voxel_encoders/voxel_encoder.py
+2
-2
No files found.
mmdet3d/datasets/pipelines/transforms_3d.py
View file @
cbc2491f
...
...
@@ -151,7 +151,7 @@ class RandomFlip3D(RandomFlip):
'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added
into result dict.
"""
# f
i
lp 2D image and its annotations
# fl
i
p 2D image and its annotations
super
(
RandomFlip3D
,
self
).
__call__
(
input_dict
)
if
self
.
sync_2d
:
...
...
@@ -921,11 +921,11 @@ class PointSample(object):
"""
points
=
results
[
'points'
]
# Points in Camera coord can provide the depth information.
# TODO: Need to suport distance-based sampling for other coord system.
# TODO: Need to sup
p
ort distance-based sampling for other coord system.
if
self
.
sample_range
is
not
None
:
from
mmdet3d.core.points
import
CameraPoints
assert
isinstance
(
points
,
CameraPoints
),
\
'
Sampling based on
distance is only appliable for CAMERA coord'
assert
isinstance
(
points
,
CameraPoints
),
'Sampling based on'
\
'distance is only appli
c
able for CAMERA coord'
points
,
choices
=
self
.
_points_random_sampling
(
points
,
self
.
num_points
,
...
...
@@ -1293,7 +1293,7 @@ class VoxelBasedPointSampler(object):
Args:
cur_sweep_cfg (dict): Config for sampling current points.
prev_sweep_cfg (dict): Config for sampling previous points.
time_dim (int): Index that indicate the time dimen
t
ion
time_dim (int): Index that indicate the time dimen
s
ion
for input points.
"""
...
...
@@ -1317,7 +1317,7 @@ class VoxelBasedPointSampler(object):
points (np.ndarray): Points subset to be sampled.
sampler (VoxelGenerator): Voxel based sampler for
each points subset.
point_dim (int): The dimen
t
ion of each points
point_dim (int): The dimen
s
ion of each points
Returns:
np.ndarray: Sampled points.
...
...
@@ -1398,7 +1398,7 @@ class VoxelBasedPointSampler(object):
points_numpy
=
points_numpy
.
squeeze
(
1
)
results
[
'points'
]
=
points
.
new_point
(
points_numpy
[...,
:
original_dim
])
# Restore the correspo
i
nding seg and mask fields
# Restore the corresponding seg and mask fields
for
key
,
dim_index
in
map_fields2dim
:
results
[
key
]
=
points_numpy
[...,
dim_index
]
...
...
@@ -1551,7 +1551,7 @@ class AffineResize(object):
results
[
key
]
=
bboxes
def
_affine_transform
(
self
,
points
,
matrix
):
"""Affine transform bbox points to input i
a
mge.
"""Affine transform bbox points to input im
a
ge.
Args:
points (np.ndarray): Points to be transformed.
...
...
@@ -1605,10 +1605,10 @@ class AffineResize(object):
return
matrix
.
astype
(
np
.
float32
)
def
_get_ref_point
(
self
,
ref_point1
,
ref_point2
):
"""Get reference point to calculate affine transf
r
om matrix.
"""Get reference point to calculate affine transfo
r
m matrix.
While using opencv to calculate the affine matrix, we need at least
three corresponding points sep
e
rately on original image and target
three corresponding points sep
a
rately on original image and target
image. Here we use two points to get the the third reference point.
"""
d
=
ref_point1
-
ref_point2
...
...
@@ -1628,7 +1628,7 @@ class RandomShiftScale(object):
Different from the normal shift and scale function, it doesn't
directly shift or scale image. It can record the shift and scale
infos into loading pipelines. It's des
g
ined to be used with
infos into loading pipelines. It's desi
g
ned to be used with
AffineResize together.
Args:
...
...
mmdet3d/datasets/waymo_dataset.py
View file @
cbc2491f
...
...
@@ -234,7 +234,7 @@ class WaymoDataset(KittiDataset):
pklfile_prefix (str, optional): The prefix of pkl files including
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
submission_prefix (str, optional): The prefix of submission data
s
.
submission_prefix (str, optional): The prefix of submission data.
If not specified, the submission data will not be generated.
show (bool, optional): Whether to visualize.
Default: False.
...
...
mmdet3d/models/backbones/nostem_regnet.py
View file @
cbc2491f
...
...
@@ -16,7 +16,7 @@ class NoStemRegNet(RegNet):
- wm (float): Quantization parameter to quantize the width.
- depth (int): Depth of the backbone.
- group_w (int): Width of group.
- bot_mul (float): Bottleneck ratio, i.e. expansion of bottlneck.
- bot_mul (float): Bottleneck ratio, i.e. expansion of bottl
e
neck.
strides (Sequence[int]): Strides of the first block of each stage.
base_channels (int): Base channels after stem layer.
in_channels (int): Number of input image channels. Normally 3.
...
...
mmdet3d/models/dense_heads/anchor_free_mono3d_head.py
View file @
cbc2491f
...
...
@@ -321,7 +321,7 @@ class AnchorFreeMono3DHead(BaseMono3DDenseHead):
return
multi_apply
(
self
.
forward_single
,
feats
)[:
5
]
def
forward_single
(
self
,
x
):
"""Forward features of a single scale lev
l
e.
"""Forward features of a single scale leve
l
.
Args:
x (Tensor): FPN feature maps of the specified stride.
...
...
mmdet3d/models/dense_heads/centerpoint_head.py
View file @
cbc2491f
...
...
@@ -23,8 +23,8 @@ class SeparateHead(BaseModule):
heads (dict): Conv information.
head_conv (int, optional): Output channels.
Default: 64.
final_kernal (int, optional): Kern
a
l size for the last conv layer.
De
a
fult: 1.
final_kernal (int, optional): Kern
e
l size for the last conv layer.
Def
a
ult: 1.
init_bias (float, optional): Initial bias. Default: -2.19.
conv_cfg (dict, optional): Config of conv layer.
Default: dict(type='Conv2d')
...
...
@@ -136,8 +136,8 @@ class DCNSeparateHead(BaseModule):
dcn_config (dict): Config of dcn layer.
head_conv (int, optional): Output channels.
Default: 64.
final_kernal (int, optional): Kern
a
l size for the last conv
layer. De
a
fult: 1.
final_kernal (int, optional): Kern
e
l size for the last conv
layer. Def
a
ult: 1.
init_bias (float, optional): Initial bias. Default: -2.19.
conv_cfg (dict, optional): Config of conv layer.
Default: dict(type='Conv2d')
...
...
mmdet3d/models/dense_heads/fcos_mono3d_head.py
View file @
cbc2491f
...
...
@@ -151,7 +151,7 @@ class FCOSMono3DHead(AnchorFreeMono3DHead):
self
.
strides
)[:
5
]
def
forward_single
(
self
,
x
,
scale
,
stride
):
"""Forward features of a single scale lev
l
e.
"""Forward features of a single scale leve
l
.
Args:
x (Tensor): FPN feature maps of the specified stride.
...
...
@@ -691,7 +691,7 @@ class FCOSMono3DHead(AnchorFreeMono3DHead):
Args:
points (torch.Tensor): points in 2D images, [N, 3],
3 corresponds with x, y in the image and depth.
view (np.ndarray): camera in
s
trinsic, [3, 3]
view (np.ndarray): camera intrinsic, [3, 3]
Returns:
torch.Tensor: points in 3D space. [N, 3],
...
...
@@ -713,7 +713,7 @@ class FCOSMono3DHead(AnchorFreeMono3DHead):
viewpad
[:
view
.
shape
[
0
],
:
view
.
shape
[
1
]]
=
points2D
.
new_tensor
(
view
)
inv_viewpad
=
torch
.
inverse
(
viewpad
).
transpose
(
0
,
1
)
# Do operation in homogenous coordinates.
# Do operation in homogen
e
ous coordinates.
nbr_points
=
unnorm_points2D
.
shape
[
0
]
homo_points2D
=
torch
.
cat
(
[
unnorm_points2D
,
...
...
mmdet3d/models/dense_heads/groupfree3d_head.py
View file @
cbc2491f
...
...
@@ -299,7 +299,7 @@ class GroupFree3DHead(BaseModule):
"""Forward pass.
Note:
The forward of GroupFree3DHead is d
e
vided into 2 steps:
The forward of GroupFree3DHead is d
i
vided into 2 steps:
1. Initial object candidates sampling.
2. Iterative object box prediction by transformer decoder.
...
...
@@ -880,7 +880,7 @@ class GroupFree3DHead(BaseModule):
Returns:
list[tuple[torch.Tensor]]: Bounding boxes, scores and labels.
"""
# support multi-stage predic
i
tons
# support multi-stage predict
i
ons
assert
self
.
test_cfg
[
'prediction_stages'
]
in
\
[
'last'
,
'all'
,
'last_three'
]
...
...
mmdet3d/models/dense_heads/parta2_rpn_head.py
View file @
cbc2491f
...
...
@@ -207,7 +207,7 @@ class PartA2RPNHead(Anchor3DHead):
mlvl_dir_scores
=
torch
.
cat
(
mlvl_dir_scores
)
# shape [k, num_class] before sigmoid
# PartA2 need to keep raw classification score
# becase the bbox head in the second stage does not have
# beca
u
se the bbox head in the second stage does not have
# classification branch,
# roi head need this score as classification score
mlvl_cls_score
=
torch
.
cat
(
mlvl_cls_score
)
...
...
mmdet3d/models/dense_heads/smoke_mono3d_head.py
View file @
cbc2491f
...
...
@@ -25,9 +25,9 @@ class SMOKEMono3DHead(AnchorFreeMono3DHead):
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
dim_channel (list[int]): inde
x
s of dimension offset preds in
dim_channel (list[int]): ind
ic
es of dimension offset preds in
regression heatmap channels.
ori_channel (list[int]): inde
x
s of orientation offset pred in
ori_channel (list[int]): ind
ic
es of orientation offset pred in
regression heatmap channels.
bbox_coder (:obj:`CameraInstance3DBoxes`): Bbox coder
for encoding and decoding boxes.
...
...
@@ -221,12 +221,12 @@ class SMOKEMono3DHead(AnchorFreeMono3DHead):
return
batch_bboxes
,
batch_scores
,
batch_topk_labels
def
get_predictions
(
self
,
labels3d
,
centers2d
,
gt_locations
,
gt_dimensions
,
gt_orientations
,
inde
x
s
,
img_metas
,
pred_reg
):
gt_orientations
,
ind
ic
es
,
img_metas
,
pred_reg
):
"""Prepare predictions for computing loss.
Args:
labels3d (Tensor): Labels of each 3D box.
sh
p
ae (B, max_objs, )
sha
p
e (B, max_objs, )
centers2d (Tensor): Coords of each projected 3D box
center on image. shape (B * max_objs, 2)
gt_locations (Tensor): Coords of each 3D box's location.
...
...
@@ -235,7 +235,7 @@ class SMOKEMono3DHead(AnchorFreeMono3DHead):
shape (N, 3)
gt_orientations (Tensor): Orientation(yaw) of each 3D box.
shape (N, 1)
inde
x
s (Tensor): Inde
x
s of the existence of the 3D box.
ind
ic
es (Tensor): Ind
ic
es of the existence of the 3D box.
shape (B * max_objs, )
img_metas (list[dict]): Meta information of each image,
e.g., image size, scaling factor, etc.
...
...
@@ -247,7 +247,7 @@ class SMOKEMono3DHead(AnchorFreeMono3DHead):
- bbox3d_yaws (:obj:`CameraInstance3DBoxes`):
bbox calculated using pred orientations.
- bbox3d_dims (:obj:`CameraInstance3DBoxes`):
bbox calculated using pred dimen
t
ions.
bbox calculated using pred dimen
s
ions.
- bbox3d_locs (:obj:`CameraInstance3DBoxes`):
bbox calculated using pred locations.
"""
...
...
@@ -269,12 +269,12 @@ class SMOKEMono3DHead(AnchorFreeMono3DHead):
pred_regression_pois
,
centers2d
,
labels3d
,
cam2imgs
,
trans_mats
,
gt_locations
)
locations
,
dimensions
,
orientations
=
locations
[
inde
x
s
],
dimensions
[
inde
x
s
],
orientations
[
inde
x
s
]
locations
,
dimensions
,
orientations
=
locations
[
ind
ic
es
],
dimensions
[
ind
ic
es
],
orientations
[
ind
ic
es
]
locations
[:,
1
]
+=
dimensions
[:,
1
]
/
2
gt_locations
=
gt_locations
[
inde
x
s
]
gt_locations
=
gt_locations
[
ind
ic
es
]
assert
len
(
locations
)
==
len
(
gt_locations
)
assert
len
(
dimensions
)
==
len
(
gt_dimensions
)
...
...
@@ -293,7 +293,7 @@ class SMOKEMono3DHead(AnchorFreeMono3DHead):
def
get_targets
(
self
,
gt_bboxes
,
gt_labels
,
gt_bboxes_3d
,
gt_labels_3d
,
centers2d
,
feat_shape
,
img_shape
,
img_metas
):
"""Get training targets for batch images.
``
Args:
gt_bboxes (list[Tensor]): Ground truth bboxes of each image,
shape (num_gt, 4).
...
...
@@ -318,10 +318,10 @@ class SMOKEMono3DHead(AnchorFreeMono3DHead):
- gt_centers2d (Tensor): Coords of each projected 3D box
center on image. shape (B * max_objs, 2)
- gt_labels3d (Tensor): Labels of each 3D box.
sh
p
ae (B, max_objs, )
- inde
x
s (Tensor): Inde
x
s of the existence of the 3D box.
sha
p
e (B, max_objs, )
- ind
ic
es (Tensor): Ind
ic
es of the existence of the 3D box.
shape (B * max_objs, )
- affine_inde
x
s (Tensor): Inde
x
s of the affine of the 3D box.
- affine_ind
ic
es (Tensor): Ind
ic
es of the affine of the 3D box.
shape (N, )
- gt_locs (Tensor): Coords of each 3D box's location.
shape (N, 3)
...
...
@@ -417,8 +417,8 @@ class SMOKEMono3DHead(AnchorFreeMono3DHead):
target_labels
=
dict
(
gt_centers2d
=
batch_centers2d
.
long
(),
gt_labels3d
=
batch_labels_3d
,
inde
x
s
=
inds
,
reg_inde
x
s
=
reg_inds
,
ind
ic
es
=
inds
,
reg_ind
ic
es
=
reg_inds
,
gt_locs
=
batch_gt_locations
,
gt_dims
=
gt_dimensions
,
gt_yaws
=
gt_orientations
,
...
...
@@ -487,14 +487,14 @@ class SMOKEMono3DHead(AnchorFreeMono3DHead):
gt_locations
=
target_labels
[
'gt_locs'
],
gt_dimensions
=
target_labels
[
'gt_dims'
],
gt_orientations
=
target_labels
[
'gt_yaws'
],
inde
x
s
=
target_labels
[
'inde
x
s'
],
ind
ic
es
=
target_labels
[
'ind
ic
es'
],
img_metas
=
img_metas
,
pred_reg
=
pred_reg
)
loss_cls
=
self
.
loss_cls
(
center2d_heatmap
,
center2d_heatmap_target
,
avg_factor
=
avg_factor
)
reg_inds
=
target_labels
[
'reg_inde
x
s'
]
reg_inds
=
target_labels
[
'reg_ind
ic
es'
]
loss_bbox_oris
=
self
.
loss_bbox
(
pred_bboxes
[
'ori'
].
corners
[
reg_inds
,
...],
...
...
mmdet3d/models/dense_heads/train_mixins.py
View file @
cbc2491f
...
...
@@ -35,7 +35,7 @@ class AnchorTrainMixin(object):
tuple (list, list, list, list, list, list, int, int):
Anchor targets, including labels, label weights,
bbox targets, bbox weights, direction targets,
direction weights, number of postive anchors and
direction weights, number of pos
i
tive anchors and
number of negative anchors.
"""
num_imgs
=
len
(
input_metas
)
...
...
mmdet3d/models/dense_heads/vote_head.py
View file @
cbc2491f
...
...
@@ -136,7 +136,7 @@ class VoteHead(BaseModule):
"""Forward pass.
Note:
The forward of VoteHead is d
e
vided into 4 steps:
The forward of VoteHead is d
i
vided into 4 steps:
1. Generate vote_points from seed_points.
2. Aggregate vote_points.
...
...
mmdet3d/models/detectors/base.py
View file @
cbc2491f
...
...
@@ -103,6 +103,6 @@ class Base3DDetector(BaseDetector):
Box3DMode
.
DEPTH
)
elif
box_mode_3d
!=
Box3DMode
.
DEPTH
:
ValueError
(
f
'Unsupported box_mode_3d
{
box_mode_3d
}
for conver
t
ion!'
)
f
'Unsupported box_mode_3d
{
box_mode_3d
}
for conver
s
ion!'
)
pred_bboxes
=
pred_bboxes
.
tensor
.
cpu
().
numpy
()
show_result
(
points
,
None
,
pred_bboxes
,
out_dir
,
file_name
)
mmdet3d/models/detectors/mvx_two_stage.py
View file @
cbc2491f
...
...
@@ -497,7 +497,7 @@ class MVXTwoStageDetector(Base3DDetector):
Box3DMode
.
DEPTH
)
elif
box_mode_3d
!=
Box3DMode
.
DEPTH
:
ValueError
(
f
'Unsupported box_mode_3d
{
box_mode_3d
}
for conver
t
ion!'
)
f
'Unsupported box_mode_3d
{
box_mode_3d
}
for conver
s
ion!'
)
pred_bboxes
=
pred_bboxes
.
tensor
.
cpu
().
numpy
()
show_result
(
points
,
None
,
pred_bboxes
,
out_dir
,
file_name
)
mmdet3d/models/model_utils/transformer.py
View file @
cbc2491f
...
...
@@ -132,7 +132,7 @@ class ConvBNPositionalEncoding(nn.Module):
xyz (Tensor): (B, N, 3) the coordinates to embed.
Returns:
Tensor: (B, num_pos_feats, N) the embeded position features.
Tensor: (B, num_pos_feats, N) the embed
d
ed position features.
"""
xyz
=
xyz
.
permute
(
0
,
2
,
1
)
position_embedding
=
self
.
position_embedding_head
(
xyz
)
...
...
mmdet3d/models/necks/dla_neck.py
View file @
cbc2491f
...
...
@@ -172,7 +172,7 @@ class DLANeck(BaseModule):
Args:
in_channels (list[int], optional): List of input channels
of multi-scale feature map.
start_level (int, optio
a
nl): The scale level where upsampling
start_level (int, option
a
l): The scale level where upsampling
starts. Default: 2.
end_level (int, optional): The scale level where upsampling
ends. Default: 5.
...
...
mmdet3d/models/roi_heads/bbox_heads/h3d_bbox_head.py
View file @
cbc2491f
...
...
@@ -20,7 +20,7 @@ class H3DBboxHead(BaseModule):
Args:
num_classes (int): The number of classes.
suface_matching_cfg (dict): Config for suface primitive matching.
su
r
face_matching_cfg (dict): Config for su
r
face primitive matching.
line_matching_cfg (dict): Config for line primitive matching.
bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and
decoding boxes.
...
...
@@ -36,7 +36,7 @@ class H3DBboxHead(BaseModule):
primitive_refine_channels (tuple[int]): Convolution channels of
prediction layer.
upper_thresh (float): Threshold for line matching.
surface_thresh (float): Threshold for suface matching.
surface_thresh (float): Threshold for su
r
face matching.
line_thresh (float): Threshold for line matching.
conv_cfg (dict): Config of convolution in prediction layer.
norm_cfg (dict): Config of BN in prediction layer.
...
...
mmdet3d/models/roi_heads/bbox_heads/parta2_bbox_head.py
View file @
cbc2491f
...
...
@@ -574,7 +574,7 @@ class PartA2BboxHead(BaseModule):
box_preds (torch.Tensor): Predicted boxes in shape (N, 7+C).
score_thr (float): Threshold of scores.
nms_thr (float): Threshold for NMS.
input_meta (dict): Meta information
s
of the current sample.
input_meta (dict): Meta information of the current sample.
use_rotate_nms (bool, optional): Whether to use rotated nms.
Defaults to True.
...
...
mmdet3d/models/roi_heads/mask_heads/primitive_head.py
View file @
cbc2491f
...
...
@@ -20,7 +20,7 @@ class PrimitiveHead(BaseModule):
num_dims (int): The dimension of primitive semantic information.
num_classes (int): The number of class.
primitive_mode (str): The mode of primitive module,
ava
l
iable mode ['z', 'xy', 'line'].
avai
l
able mode ['z', 'xy', 'line'].
bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and
decoding boxes.
train_cfg (dict): Config for training.
...
...
@@ -30,7 +30,7 @@ class PrimitiveHead(BaseModule):
feat_channels (tuple[int]): Convolution channels of
prediction layer.
upper_thresh (float): Threshold for line matching.
surface_thresh (float): Threshold for suface matching.
surface_thresh (float): Threshold for su
r
face matching.
conv_cfg (dict): Config of convolution in prediction layer.
norm_cfg (dict): Config of BN in prediction layer.
objectness_loss (dict): Config of objectness loss.
...
...
mmdet3d/models/voxel_encoders/pillar_encoder.py
View file @
cbc2491f
...
...
@@ -233,7 +233,7 @@ class DynamicPillarFeatureNet(PillarFeatureNet):
Returns:
torch.Tensor: Corresponding voxel centers of each points, shape
(M, C), where M is the num
v
er of points.
(M, C), where M is the num
b
er of points.
"""
# Step 1: scatter voxel into canvas
# Calculate necessary things for canvas creation
...
...
mmdet3d/models/voxel_encoders/voxel_encoder.py
View file @
cbc2491f
...
...
@@ -232,7 +232,7 @@ class DynamicVFE(nn.Module):
coors (torch.Tensor): Coordinates of voxels, shape is Nx(1+NDim).
points (list[torch.Tensor], optional): Raw points used to guide the
multi-modality fusion. Defaults to None.
img_feats (list[torch.Tensor], optional): Image fetures used for
img_feats (list[torch.Tensor], optional): Image fe
a
tures used for
multi-modality fusion. Defaults to None.
img_metas (dict, optional): [description]. Defaults to None.
...
...
@@ -397,7 +397,7 @@ class HardVFE(nn.Module):
features (torch.Tensor): Features of voxels, shape is MxNxC.
num_points (torch.Tensor): Number of points in each voxel.
coors (torch.Tensor): Coordinates of voxels, shape is Mx(1+NDim).
img_feats (list[torch.Tensor], optional): Image fetures used for
img_feats (list[torch.Tensor], optional): Image fe
a
tures used for
multi-modality fusion. Defaults to None.
img_metas (dict, optional): [description]. Defaults to None.
...
...
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment