Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
mmdetection3d
Commits
cbc2491f
Unverified
Commit
cbc2491f
authored
Oct 13, 2021
by
Tai-Wang
Committed by
GitHub
Oct 13, 2021
Browse files
Add code-spell pre-commit hook and fix typos (#995)
parent
6b1602f1
Changes
79
Hide whitespace changes
Inline
Side-by-side
Showing
19 changed files
with
35 additions
and
32 deletions
+35
-32
mmdet3d/ops/ball_query/ball_query.py
mmdet3d/ops/ball_query/ball_query.py
+1
-1
mmdet3d/ops/group_points/group_points.py
mmdet3d/ops/group_points/group_points.py
+1
-1
mmdet3d/ops/knn/knn.py
mmdet3d/ops/knn/knn.py
+2
-2
mmdet3d/ops/norm.py
mmdet3d/ops/norm.py
+3
-3
mmdet3d/ops/paconv/paconv.py
mmdet3d/ops/paconv/paconv.py
+2
-2
mmdet3d/ops/paconv/utils.py
mmdet3d/ops/paconv/utils.py
+2
-2
mmdet3d/ops/pointnet_modules/paconv_sa_module.py
mmdet3d/ops/pointnet_modules/paconv_sa_module.py
+1
-1
mmdet3d/ops/spconv/conv.py
mmdet3d/ops/spconv/conv.py
+5
-5
mmdet3d/ops/spconv/include/prettyprint.h
mmdet3d/ops/spconv/include/prettyprint.h
+1
-1
mmdet3d/ops/spconv/include/tensorview/tensorview.h
mmdet3d/ops/spconv/include/tensorview/tensorview.h
+2
-2
mmdet3d/ops/voxel/src/voxelization_cuda.cu
mmdet3d/ops/voxel/src/voxelization_cuda.cu
+2
-2
requirements/runtime.txt
requirements/runtime.txt
+1
-1
setup.cfg
setup.cfg
+3
-0
tests/data/kitti/kitti_infos_mono3d.coco.json
tests/data/kitti/kitti_infos_mono3d.coco.json
+1
-1
tests/data/nuscenes/nus_infos_mono3d.coco.json
tests/data/nuscenes/nus_infos_mono3d.coco.json
+1
-1
tests/test_metrics/test_losses.py
tests/test_metrics/test_losses.py
+2
-2
tests/test_utils/test_box3d.py
tests/test_utils/test_box3d.py
+1
-1
tools/data_converter/kitti_converter.py
tools/data_converter/kitti_converter.py
+2
-2
tools/data_converter/nuscenes_converter.py
tools/data_converter/nuscenes_converter.py
+2
-2
No files found.
mmdet3d/ops/ball_query/ball_query.py
View file @
cbc2491f
...
...
@@ -23,7 +23,7 @@ class BallQuery(Function):
center_xyz (Tensor): (B, npoint, 3) centers of the ball query.
Returns:
Tensor: (B, npoint, nsample) tensor with the indic
i
es of
Tensor: (B, npoint, nsample) tensor with the indices of
the features that form the query balls.
"""
assert
center_xyz
.
is_contiguous
()
...
...
mmdet3d/ops/group_points/group_points.py
View file @
cbc2491f
...
...
@@ -183,7 +183,7 @@ class GroupingOperation(Function):
Args:
features (Tensor): (B, C, N) tensor of features to group.
indices (Tensor): (B, npoint, nsample) the indic
i
es of
indices (Tensor): (B, npoint, nsample) the indices of
features to group with.
Returns:
...
...
mmdet3d/ops/knn/knn.py
View file @
cbc2491f
...
...
@@ -27,11 +27,11 @@ class KNN(Function):
center_xyz (Tensor): (B, npoint, 3) if transposed == False,
else (B, 3, npoint). centers of the knn query.
transposed (bool): whether the input tensors are transposed.
defaults to False. Should not expicitly use this keyword
defaults to False. Should not exp
l
icitly use this keyword
when calling knn (=KNN.apply), just add the fourth param.
Returns:
Tensor: (B, k, npoint) tensor with the indic
i
es of
Tensor: (B, k, npoint) tensor with the indices of
the features that form k-nearest neighbours.
"""
assert
k
>
0
...
...
mmdet3d/ops/norm.py
View file @
cbc2491f
...
...
@@ -26,7 +26,7 @@ class AllReduce(Function):
@
NORM_LAYERS
.
register_module
(
'naiveSyncBN1d'
)
class
NaiveSyncBatchNorm1d
(
nn
.
BatchNorm1d
):
"""Syncronized Batch Normalization for 3D Tensors.
"""Sync
h
ronized Batch Normalization for 3D Tensors.
Note:
This implementation is modified from
...
...
@@ -37,7 +37,7 @@ class NaiveSyncBatchNorm1d(nn.BatchNorm1d):
when the batch size on each worker is quite different
(e.g., when scale augmentation is used).
In 3D detection, different workers has points of different shapes,
whi
s
h also cause instability.
whi
c
h also cause instability.
Use this implementation before `nn.SyncBatchNorm` is fixed.
It is slower than `nn.SyncBatchNorm`.
...
...
@@ -80,7 +80,7 @@ class NaiveSyncBatchNorm1d(nn.BatchNorm1d):
@
NORM_LAYERS
.
register_module
(
'naiveSyncBN2d'
)
class
NaiveSyncBatchNorm2d
(
nn
.
BatchNorm2d
):
"""Syncronized Batch Normalization for 4D Tensors.
"""Sync
h
ronized Batch Normalization for 4D Tensors.
Note:
This implementation is modified from
...
...
mmdet3d/ops/paconv/paconv.py
View file @
cbc2491f
...
...
@@ -83,7 +83,7 @@ class ScoreNet(nn.Module):
Args:
xyz_features (torch.Tensor): (B, C, N, K), features constructed
from xyz coordinates of point pairs. May contain relative
positions, Euclid
i
an distance, etc.
positions, Euclid
e
an distance, etc.
Returns:
torch.Tensor: (B, N, K, M), predicted scores for `M` kernels.
...
...
@@ -174,7 +174,7 @@ class PAConv(nn.Module):
# (grouped_xyz - center_xyz, grouped_xyz)
self
.
scorenet_in_channels
=
6
elif
scorenet_input
==
'w_neighbor_dist'
:
# (center_xyz, grouped_xyz - center_xyz, Euclid
i
an distance)
# (center_xyz, grouped_xyz - center_xyz, Euclid
e
an distance)
self
.
scorenet_in_channels
=
7
else
:
raise
NotImplementedError
(
...
...
mmdet3d/ops/paconv/utils.py
View file @
cbc2491f
...
...
@@ -2,14 +2,14 @@ import torch
def
calc_euclidian_dist
(
xyz1
,
xyz2
):
"""Calculate the Euclid
i
an distance between two sets of points.
"""Calculate the Euclid
e
an distance between two sets of points.
Args:
xyz1 (torch.Tensor): (N, 3), the first set of points.
xyz2 (torch.Tensor): (N, 3), the second set of points.
Returns:
torch.Tensor: (N, ), the Euclid
i
an distance between each point pair.
torch.Tensor: (N, ), the Euclid
e
an distance between each point pair.
"""
assert
xyz1
.
shape
[
0
]
==
xyz2
.
shape
[
0
],
'number of points are not the same'
assert
xyz1
.
shape
[
1
]
==
xyz2
.
shape
[
1
]
==
3
,
\
...
...
mmdet3d/ops/pointnet_modules/paconv_sa_module.py
View file @
cbc2491f
...
...
@@ -28,7 +28,7 @@ class PAConvSAModuleMSG(BasePointSAModule):
- 'w_neighbor': Use xyz coordinates and the difference with center
points as input.
- 'w_neighbor_dist': Use xyz coordinates, the difference with
center points and the Euclid
i
an distance as input.
center points and the Euclid
e
an distance as input.
scorenet_cfg (dict, optional): Config of the ScoreNet module, which
may contain the following keys and values:
...
...
mmdet3d/ops/spconv/conv.py
View file @
cbc2491f
...
...
@@ -143,16 +143,16 @@ class SparseConvolution(SparseModule):
out_tensor
.
indice_dict
=
input
.
indice_dict
out_tensor
.
grid
=
input
.
grid
return
out_tensor
data
s
=
input
.
find_indice_pair
(
self
.
indice_key
)
data
=
input
.
find_indice_pair
(
self
.
indice_key
)
if
self
.
inverse
:
assert
data
s
is
not
None
and
self
.
indice_key
is
not
None
_
,
outids
,
indice_pairs
,
indice_pair_num
,
out_spatial_shape
=
data
s
assert
data
is
not
None
and
self
.
indice_key
is
not
None
_
,
outids
,
indice_pairs
,
indice_pair_num
,
out_spatial_shape
=
data
assert
indice_pairs
.
shape
[
0
]
==
np
.
prod
(
self
.
kernel_size
),
'inverse conv must have same kernel size as its couple conv'
else
:
if
self
.
indice_key
is
not
None
and
data
s
is
not
None
:
outids
,
_
,
indice_pairs
,
indice_pair_num
,
_
=
data
s
if
self
.
indice_key
is
not
None
and
data
is
not
None
:
outids
,
_
,
indice_pairs
,
indice_pair_num
,
_
=
data
else
:
outids
,
indice_pairs
,
indice_pair_num
=
ops
.
get_indice_pairs
(
indices
,
...
...
mmdet3d/ops/spconv/include/prettyprint.h
View file @
cbc2491f
...
...
@@ -93,7 +93,7 @@ struct delimiters {
};
// Functor to print containers. You can use this directly if you want
// to specif
ic
y a non-default delimiters type. The printing logic can
// to specify a non-default delimiters type. The printing logic can
// be customized by specializing the nested template.
template
<
typename
T
,
typename
TChar
=
char
,
...
...
mmdet3d/ops/spconv/include/tensorview/tensorview.h
View file @
cbc2491f
...
...
@@ -73,7 +73,7 @@ void sstream_print(SStream &ss, T val, TArgs... args) {
if (!(expr)) { \
std::stringstream __macro_s; \
__macro_s << __FILE__ << " " << __LINE__ << "\n"; \
__macro_s << #expr << " assert faild. "; \
__macro_s << #expr << " assert fail
e
d. "; \
tv::sstream_print(__macro_s, __VA_ARGS__); \
throw std::runtime_error(__macro_s.str()); \
} \
...
...
@@ -84,7 +84,7 @@ void sstream_print(SStream &ss, T val, TArgs... args) {
if (!(expr)) { \
std::stringstream __macro_s; \
__macro_s << __FILE__ << " " << __LINE__ << "\n"; \
__macro_s << #expr << " assert faild. "; \
__macro_s << #expr << " assert fail
e
d. "; \
tv::sstream_print(__macro_s, __VA_ARGS__); \
throw std::invalid_argument(__macro_s.str()); \
} \
...
...
mmdet3d/ops/voxel/src/voxelization_cuda.cu
View file @
cbc2491f
...
...
@@ -305,7 +305,7 @@ int hard_voxelize_gpu(const at::Tensor& points, at::Tensor& voxels,
cudaDeviceSynchronize
();
AT_CUDA_CHECK
(
cudaGetLastError
());
// 3. determin voxel num and voxel's coor index
// 3. determin
e
voxel num and voxel's coor index
// make the logic in the CUDA device could accelerate about 10 times
auto
coor_to_voxelidx
=
-
at
::
ones
(
{
...
...
@@ -316,7 +316,7 @@ int hard_voxelize_gpu(const at::Tensor& points, at::Tensor& voxels,
{
1
,
},
points
.
options
().
dtype
(
at
::
kInt
));
// must be zero from the begining
points
.
options
().
dtype
(
at
::
kInt
));
// must be zero from the begin
n
ing
AT_DISPATCH_ALL_TYPES
(
temp_coors
.
scalar_type
(),
"determin_duplicate"
,
([
&
]
{
...
...
requirements/runtime.txt
View file @
cbc2491f
lyft_dataset_sdk
networkx>=2.2,<2.3
# we may unlock the verion of numba in the future
# we may unlock the ver
s
ion of numba in the future
numba==0.48.0
numpy<1.20.0
nuscenes-devkit
...
...
setup.cfg
View file @
cbc2491f
...
...
@@ -11,3 +11,6 @@ known_first_party = mmdet,mmseg,mmdet3d
known_third_party = cv2,imageio,indoor3d_util,load_scannet_data,lyft_dataset_sdk,m2r,matplotlib,mmcv,nuimages,numba,numpy,nuscenes,pandas,plyfile,pycocotools,pyquaternion,pytest,pytorch_sphinx_theme,recommonmark,scannet_utils,scipy,seaborn,shapely,skimage,tensorflow,terminaltables,torch,trimesh,waymo_open_dataset
no_lines_before = STDLIB,LOCALFOLDER
default_section = THIRDPARTY
[codespell]
ignore-words-list = ans,refridgerator,crate,hist,formating,dout,wan,nd,fo
tests/data/kitti/kitti_infos_mono3d.coco.json
View file @
cbc2491f
{
"images"
:
[{
"file_name"
:
"training/image_2/000007.png"
,
"id"
:
7
,
"Tri2v"
:
[[
0.9999976
,
0.0007553071
,
-0.002035826
,
-0.8086759
],
[
-0.0007854027
,
0.9998898
,
-0.01482298
,
0.3195559
],
[
0.002024406
,
0.01482454
,
0.9998881
,
-0.7997231
],
[
0.0
,
0.0
,
0.0
,
1.0
]],
"Trv2c"
:
[[
0.007533745
,
-0.9999714
,
-0.000616602
,
-0.004069766
],
[
0.01480249
,
0.0007280733
,
-0.9998902
,
-0.07631618
],
[
0.9998621
,
0.00752379
,
0.01480755
,
-0.2717806
],
[
0.0
,
0.0
,
0.0
,
1.0
]],
"rect"
:
[[
0.9999239
,
0.00983776
,
-0.007445048
,
0.0
],
[
-0.009869795
,
0.9999421
,
-0.004278459
,
0.0
],
[
0.007402527
,
0.004351614
,
0.9999631
,
0.0
],
[
0.0
,
0.0
,
0.0
,
1.0
]],
"cam_intrinsic"
:
[[
721.5377
,
0.0
,
609.5593
,
44.85728
],
[
0.0
,
721.5377
,
172.854
,
0.2163791
],
[
0.0
,
0.0
,
1.0
,
0.002745884
],
[
0.0
,
0.0
,
0.0
,
1.0
]],
"width"
:
1242
,
"height"
:
375
}],
"annotations"
:
[{
"file_name"
:
"training/image_2/000007.png"
,
"image_id"
:
7
,
"area"
:
2556.023616260146
,
"category_name"
:
"Car"
,
"category_id"
:
2
,
"bbox"
:
[
565.4822720402807
,
175.01202566042497
,
51.17323679197273
,
49.94844525177848
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
-0.627830982208252
,
0.8849999904632568
,
25.010000228881836
,
3.200000047683716
,
1.6100000143051147
,
1.659999966621399
,
-1.590000033378601
],
"velo_cam3d"
:
-1
,
"center2d"
:
[
591.3814672167642
,
198.3730937263457
,
25.012745884
],
"attribute_name"
:
-1
,
"attribute_id"
:
-1
,
"segmentation"
:
[],
"id"
:
2
},
{
"file_name"
:
"training/image_2/000007.png"
,
"image_id"
:
7
,
"area"
:
693.1538564468428
,
"category_name"
:
"Car"
,
"category_id"
:
2
,
"bbox"
:
[
481.8496708488522
,
179.85710612050596
,
30.55976691329198
,
22.681909139344754
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
-7.367831230163574
,
1.1799999475479126
,
47.54999923706055
,
3.700000047683716
,
1.399999976158142
,
1.5099999904632568
,
1.5499999523162842
],
"velo_cam3d"
:
-1
,
"center2d"
:
[
497.72892067550754
,
190.75320250122618
,
47.552745884
],
"attribute_name"
:
-1
,
"attribute_id"
:
-1
,
"segmentation"
:
[],
"id"
:
3
},
{
"file_name"
:
"training/image_2/000007.png"
,
"image_id"
:
7
,
"area"
:
419.21693566410073
,
"category_name"
:
"Car"
,
"category_id"
:
2
,
"bbox"
:
[
542.2247151650495
,
175.73341152322814
,
23.019633917835904
,
18.211277258379255
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
-4.647830963134766
,
0.9800000190734863
,
60.52000045776367
,
4.050000190734863
,
1.4600000381469727
,
1.659999966621399
,
1.559999942779541
],
"velo_cam3d"
:
-1
,
"center2d"
:
[
554.1213152040074
,
184.53305847203026
,
60.522745884
],
"attribute_name"
:
-1
,
"attribute_id"
:
-1
,
"segmentation"
:
[],
"id"
:
4
},
{
"file_name"
:
"training/image_2/000007.png"
,
"image_id"
:
7
,
"area"
:
928.9555081918186
,
"category_name"
:
"Cyclist"
,
"category_id"
:
1
,
"bbox"
:
[
330.84191493374504
,
176.13804311926262
,
24.65593879860404
,
37.67674456769879
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
-12.567831039428711
,
1.0199999809265137
,
34.09000015258789
,
1.9500000476837158
,
1.7200000286102295
,
0.5
,
1.5399999618530273
],
"velo_cam3d"
:
-1
,
"center2d"
:
[
343.52506265845847
,
194.43366972124528
,
34.092745884
],
"attribute_name"
:
-1
,
"attribute_id"
:
-1
,
"segmentation"
:
[],
"id"
:
5
}],
"categories"
:
[{
"id"
:
0
,
"name"
:
"Pedestrian"
},
{
"id"
:
1
,
"name"
:
"Cyclist"
},
{
"id"
:
2
,
"name"
:
"Car"
}]}
\ No newline at end of file
{
"images"
:
[{
"file_name"
:
"training/image_2/000007.png"
,
"id"
:
7
,
"Tri2v"
:
[[
0.9999976
,
0.0007553071
,
-0.002035826
,
-0.8086759
],
[
-0.0007854027
,
0.9998898
,
-0.01482298
,
0.3195559
],
[
0.002024406
,
0.01482454
,
0.9998881
,
-0.7997231
],
[
0.0
,
0.0
,
0.0
,
1.0
]],
"Trv2c"
:
[[
0.007533745
,
-0.9999714
,
-0.000616602
,
-0.004069766
],
[
0.01480249
,
0.0007280733
,
-0.9998902
,
-0.07631618
],
[
0.9998621
,
0.00752379
,
0.01480755
,
-0.2717806
],
[
0.0
,
0.0
,
0.0
,
1.0
]],
"rect"
:
[[
0.9999239
,
0.00983776
,
-0.007445048
,
0.0
],
[
-0.009869795
,
0.9999421
,
-0.004278459
,
0.0
],
[
0.007402527
,
0.004351614
,
0.9999631
,
0.0
],
[
0.0
,
0.0
,
0.0
,
1.0
]],
"cam_intrinsic"
:
[[
721.5377
,
0.0
,
609.5593
,
44.85728
],
[
0.0
,
721.5377
,
172.854
,
0.2163791
],
[
0.0
,
0.0
,
1.0
,
0.002745884
],
[
0.0
,
0.0
,
0.0
,
1.0
]],
"width"
:
1242
,
"height"
:
375
}],
"annotations"
:
[{
"file_name"
:
"training/image_2/000007.png"
,
"image_id"
:
7
,
"area"
:
2556.023616260146
,
"category_name"
:
"Car"
,
"category_id"
:
2
,
"bbox"
:
[
565.4822720402807
,
175.01202566042497
,
51.17323679197273
,
49.94844525177848
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
-0.627830982208252
,
0.8849999904632568
,
25.010000228881836
,
3.200000047683716
,
1.6100000143051147
,
1.659999966621399
,
-1.590000033378601
],
"velo_cam3d"
:
-1
,
"center2d"
:
[
591.3814672167642
,
198.3730937263457
,
25.012745884
],
"attribute_name"
:
-1
,
"attribute_id"
:
-1
,
"segmentation"
:
[],
"id"
:
2
},
{
"file_name"
:
"training/image_2/000007.png"
,
"image_id"
:
7
,
"area"
:
693.1538564468428
,
"category_name"
:
"Car"
,
"category_id"
:
2
,
"bbox"
:
[
481.8496708488522
,
179.85710612050596
,
30.55976691329198
,
22.681909139344754
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
-7.367831230163574
,
1.1799999475479126
,
47.54999923706055
,
3.700000047683716
,
1.399999976158142
,
1.5099999904632568
,
1.5499999523162842
],
"velo_cam3d"
:
-1
,
"center2d"
:
[
497.72892067550754
,
190.75320250122618
,
47.552745884
],
"attribute_name"
:
-1
,
"attribute_id"
:
-1
,
"segmentation"
:
[],
"id"
:
3
},
{
"file_name"
:
"training/image_2/000007.png"
,
"image_id"
:
7
,
"area"
:
419.21693566410073
,
"category_name"
:
"Car"
,
"category_id"
:
2
,
"bbox"
:
[
542.2247151650495
,
175.73341152322814
,
23.019633917835904
,
18.211277258379255
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
-4.647830963134766
,
0.9800000190734863
,
60.52000045776367
,
4.050000190734863
,
1.4600000381469727
,
1.659999966621399
,
1.559999942779541
],
"velo_cam3d"
:
-1
,
"center2d"
:
[
554.1213152040074
,
184.53305847203026
,
60.522745884
],
"attribute_name"
:
-1
,
"attribute_id"
:
-1
,
"segmentation"
:
[],
"id"
:
4
},
{
"file_name"
:
"training/image_2/000007.png"
,
"image_id"
:
7
,
"area"
:
928.9555081918186
,
"category_name"
:
"Cyclist"
,
"category_id"
:
1
,
"bbox"
:
[
330.84191493374504
,
176.13804311926262
,
24.65593879860404
,
37.67674456769879
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
-12.567831039428711
,
1.0199999809265137
,
34.09000015258789
,
1.9500000476837158
,
1.7200000286102295
,
0.5
,
1.5399999618530273
],
"velo_cam3d"
:
-1
,
"center2d"
:
[
343.52506265845847
,
194.43366972124528
,
34.092745884
],
"attribute_name"
:
-1
,
"attribute_id"
:
-1
,
"segmentation"
:
[],
"id"
:
5
}],
"categories"
:
[{
"id"
:
0
,
"name"
:
"Pedestrian"
},
{
"id"
:
1
,
"name"
:
"Cyclist"
},
{
"id"
:
2
,
"name"
:
"Car"
}]}
tests/data/nuscenes/nus_infos_mono3d.coco.json
View file @
cbc2491f
{
"images"
:
[{
"file_name"
:
"samples/CAM_BACK_LEFT/n015-2018-07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg"
,
"id"
:
"86e6806d626b4711a6d0f5015b090116"
,
"token"
:
"e93e98b63d3b40209056d129dc53ceee"
,
"cam2ego_rotation"
:
[
0.6924185592174665
,
-0.7031619420114925
,
-0.11648342771943819
,
0.11203317912370753
],
"cam2ego_translation"
:
[
1.03569100218
,
0.484795032713
,
1.59097014818
],
"ego2global_rotation"
:
[
-0.7495886280607293
,
-0.0077695335695504636
,
0.00829759813869316
,
-0.6618063711504101
],
"ego2global_translation"
:
[
1010.1328353833223
,
610.8111652918716
,
0.0
],
"cam_intrinsic"
:
[[
1256.7414812095406
,
0.0
,
792.1125740759628
],
[
0.0
,
1256.7414812095406
,
492.7757465151356
],
[
0.0
,
0.0
,
1.0
]],
"width"
:
1600
,
"height"
:
900
},
{
"file_name"
:
"samples/CAM_FRONT/n015-2018-07-18-11-07-57+0800__CAM_FRONT__1531883530412470.jpg"
,
"id"
:
"020d7b4f858147558106c504f7f31bef"
,
"token"
:
"e93e98b63d3b40209056d129dc53ceee"
,
"cam2ego_rotation"
:
[
0.4998015430569128
,
-0.5030316162024876
,
0.4997798114386805
,
-0.49737083824542755
],
"cam2ego_translation"
:
[
1.70079118954
,
0.0159456324149
,
1.51095763913
],
"ego2global_rotation"
:
[
-0.7495886280607293
,
-0.0077695335695504636
,
0.00829759813869316
,
-0.6618063711504101
],
"ego2global_translation"
:
[
1010.1328353833223
,
610.8111652918716
,
0.0
],
"cam_intrinsic"
:
[[
1266.417203046554
,
0.0
,
816.2670197447984
],
[
0.0
,
1266.417203046554
,
491.50706579294757
],
[
0.0
,
0.0
,
1.0
]],
"width"
:
1600
,
"height"
:
900
},
{
"file_name"
:
"samples/CAM_FRONT_RIGHT/n015-2018-07-18-11-07-57+0800__CAM_FRONT_RIGHT__1531883530420339.jpg"
,
"id"
:
"16d39ff22a8545b0a4ee3236a0fe1c20"
,
"token"
:
"e93e98b63d3b40209056d129dc53ceee"
,
"cam2ego_rotation"
:
[
0.2060347966337182
,
-0.2026940577919598
,
0.6824507824531167
,
-0.6713610884174485
],
"cam2ego_translation"
:
[
1.5508477543
,
-0.493404796419
,
1.49574800619
],
"ego2global_rotation"
:
[
-0.7495886280607293
,
-0.0077695335695504636
,
0.00829759813869316
,
-0.6618063711504101
],
"ego2global_translation"
:
[
1010.1328353833223
,
610.8111652918716
,
0.0
],
"cam_intrinsic"
:
[[
1260.8474446004698
,
0.0
,
807.968244525554
],
[
0.0
,
1260.8474446004698
,
495.3344268742088
],
[
0.0
,
0.0
,
1.0
]],
"width"
:
1600
,
"height"
:
900
},
{
"file_name"
:
"samples/CAM_FRONT_LEFT/n015-2018-07-18-11-07-57+0800__CAM_FRONT_LEFT__1531883530404844.jpg"
,
"id"
:
"24332e9c554a406f880430f17771b608"
,
"token"
:
"e93e98b63d3b40209056d129dc53ceee"
,
"cam2ego_rotation"
:
[
0.6757265034669446
,
-0.6736266522251881
,
0.21214015046209478
,
-0.21122827103904068
],
"cam2ego_translation"
:
[
1.52387798135
,
0.494631336551
,
1.50932822144
],
"ego2global_rotation"
:
[
-0.7495886280607293
,
-0.0077695335695504636
,
0.00829759813869316
,
-0.6618063711504101
],
"ego2global_translation"
:
[
1010.1328353833223
,
610.8111652918716
,
0.0
],
"cam_intrinsic"
:
[[
1272.5979470598488
,
0.0
,
826.6154927353808
],
[
0.0
,
1272.5979470598488
,
479.75165386361925
],
[
0.0
,
0.0
,
1.0
]],
"width"
:
1600
,
"height"
:
900
},
{
"file_name"
:
"samples/CAM_BACK/n015-2018-07-18-11-07-57+0800__CAM_BACK__1531883530437525.jpg"
,
"id"
:
"aab35aeccbda42de82b2ff5c278a0d48"
,
"token"
:
"e93e98b63d3b40209056d129dc53ceee"
,
"cam2ego_rotation"
:
[
0.5037872666382278
,
-0.49740249788611096
,
-0.4941850223835201
,
0.5045496097725578
],
"cam2ego_translation"
:
[
0.0283260309358
,
0.00345136761476
,
1.57910346144
],
"ego2global_rotation"
:
[
-0.7495886280607293
,
-0.0077695335695504636
,
0.00829759813869316
,
-0.6618063711504101
],
"ego2global_translation"
:
[
1010.1328353833223
,
610.8111652918716
,
0.0
],
"cam_intrinsic"
:
[[
809.2209905677063
,
0.0
,
829.2196003259838
],
[
0.0
,
809.2209905677063
,
481.77842384512485
],
[
0.0
,
0.0
,
1.0
]],
"width"
:
1600
,
"height"
:
900
},
{
"file_name"
:
"samples/CAM_BACK_RIGHT/n015-2018-07-18-11-07-57+0800__CAM_BACK_RIGHT__1531883530427893.jpg"
,
"id"
:
"ec7096278e484c9ebe6894a2ad5682e9"
,
"token"
:
"e93e98b63d3b40209056d129dc53ceee"
,
"cam2ego_rotation"
:
[
0.12280980120078765
,
-0.132400842670559
,
-0.7004305821388234
,
0.690496031265798
],
"cam2ego_translation"
:
[
1.0148780988
,
-0.480568219723
,
1.56239545128
],
"ego2global_rotation"
:
[
-0.7495886280607293
,
-0.0077695335695504636
,
0.00829759813869316
,
-0.6618063711504101
],
"ego2global_translation"
:
[
1010.1328353833223
,
610.8111652918716
,
0.0
],
"cam_intrinsic"
:
[[
1259.5137405846733
,
0.0
,
807.2529053838625
],
[
0.0
,
1259.5137405846733
,
501.19579884916527
],
[
0.0
,
0.0
,
1.0
]],
"width"
:
1600
,
"height"
:
900
}],
"annotations"
:
[{
"file_name"
:
"samples/CAM_FRONT/n015-2018-07-18-11-07-57+0800__CAM_FRONT__1531883530412470.jpg"
,
"image_id"
:
"020d7b4f858147558106c504f7f31bef"
,
"area"
:
85383.89600714693
,
"category_name"
:
"truck"
,
"category_id"
:
1
,
"bbox"
:
[
0.0
,
357.732750319127
,
342.56437261895206
,
249.24920053528984
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
-10.356295829208502
,
-0.06394600736590471
,
18.785737229926998
,
2.312
,
7.516
,
3.093
,
-0.5996975863361309
],
"velo_cam3d"
:
[
0.05742557272436208
,
0.06990201482350666
],
"center2d"
:
[
118.11016609440316
,
487.19622492451936
,
18.785737229926998
],
"attribute_name"
:
"vehicle.parked"
,
"attribute_id"
:
6
,
"segmentation"
:
[],
"id"
:
0
},
{
"file_name"
:
"samples/CAM_FRONT_LEFT/n015-2018-07-18-11-07-57+0800__CAM_FRONT_LEFT__1531883530404844.jpg"
,
"image_id"
:
"24332e9c554a406f880430f17771b608"
,
"area"
:
76274.38331683438
,
"category_name"
:
"truck"
,
"category_id"
:
1
,
"bbox"
:
[
1305.1296604171719
,
350.75901341602525
,
294.87033958282814
,
258.6709243959383
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
9.795917040815693
,
0.07538275380197612
,
19.033148401567978
,
2.312
,
7.516
,
3.093
,
-1.5546044317874126
],
"velo_cam3d"
:
[
0.09022854769195846
,
-0.0065096147400431695
],
"center2d"
:
[
1481.5919397578637
,
484.79190972187814
,
19.033148401567978
],
"attribute_name"
:
"vehicle.parked"
,
"attribute_id"
:
6
,
"segmentation"
:
[],
"id"
:
1
},
{
"file_name"
:
"samples/CAM_FRONT_LEFT/n015-2018-07-18-11-07-57+0800__CAM_FRONT_LEFT__1531883530404844.jpg"
,
"image_id"
:
"24332e9c554a406f880430f17771b608"
,
"area"
:
5248.9339273703135
,
"category_name"
:
"truck"
,
"category_id"
:
1
,
"bbox"
:
[
808.1218983320856
,
436.2076328554
,
75.28483638734929
,
69.72099800235912
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
0.7896581102503435
,
-0.32866532307883706
,
58.48166239420381
,
2.877
,
6.372
,
2.978
,
1.641180695066564
],
"velo_cam3d"
:
[
0.009938485543455734
,
0.0010084200213775884
],
"center2d"
:
[
843.7989524532317
,
472.5996886441534
,
58.48166239420381
],
"attribute_name"
:
"vehicle.parked"
,
"attribute_id"
:
6
,
"segmentation"
:
[],
"id"
:
2
},
{
"file_name"
:
"samples/CAM_FRONT_LEFT/n015-2018-07-18-11-07-57+0800__CAM_FRONT_LEFT__1531883530404844.jpg"
,
"image_id"
:
"24332e9c554a406f880430f17771b608"
,
"area"
:
25266.816070927107
,
"category_name"
:
"truck"
,
"category_id"
:
1
,
"bbox"
:
[
1133.5883785276196
,
424.4436001005383
,
202.5256666350731
,
124.75858734712807
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
9.39338221449255
,
0.19762751304835102
,
30.01455814405707
,
2.156
,
6.227
,
2.601
,
-1.4587684025759116
],
"velo_cam3d"
:
[
0.0
,
0.0
],
"center2d"
:
[
1224.88885277412
,
488.1309332180172
,
30.01455814405707
],
"attribute_name"
:
"vehicle.parked"
,
"attribute_id"
:
6
,
"segmentation"
:
[],
"id"
:
3
},
{
"file_name"
:
"samples/CAM_BACK/n015-2018-07-18-11-07-57+0800__CAM_BACK__1531883530437525.jpg"
,
"image_id"
:
"aab35aeccbda42de82b2ff5c278a0d48"
,
"area"
:
31981.88483023472
,
"category_name"
:
"car"
,
"category_id"
:
0
,
"bbox"
:
[
652.8710695836726
,
487.2457293359287
,
256.3734471348506
,
124.74725907715583
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
-0.48041137691585667
,
0.8426032188612489
,
12.27160016308813
,
1.871
,
4.478
,
1.456
,
-2.0402647554154876
],
"velo_cam3d"
:
[
-2.4043357184501866
,
-4.232358489028598
],
"center2d"
:
[
797.5400340802389
,
537.3418550489371
,
12.27160016308813
],
"attribute_name"
:
"vehicle.moving"
,
"attribute_id"
:
5
,
"segmentation"
:
[],
"id"
:
4
},
{
"file_name"
:
"samples/CAM_BACK_LEFT/n015-2018-07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg"
,
"image_id"
:
"86e6806d626b4711a6d0f5015b090116"
,
"area"
:
1874.1656394574547
,
"category_name"
:
"traffic_cone"
,
"category_id"
:
8
,
"bbox"
:
[
1084.536273989852
,
513.7567766430512
,
30.043100006470013
,
62.382565016720605
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
3.745641322414848
,
0.6321604510604618
,
15.319339525420224
,
0.3
,
0.291
,
0.734
,
1.4550554479430875
],
"velo_cam3d"
:
[
0.028202672296939114
,
-0.001622377193634249
],
"center2d"
:
[
1099.3910188026568
,
544.635832278593
,
15.319339525420224
],
"attribute_name"
:
"None"
,
"attribute_id"
:
8
,
"segmentation"
:
[],
"id"
:
5
},
{
"file_name"
:
"samples/CAM_BACK_LEFT/n015-2018-07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg"
,
"image_id"
:
"86e6806d626b4711a6d0f5015b090116"
,
"area"
:
1641.3529623313364
,
"category_name"
:
"traffic_cone"
,
"category_id"
:
8
,
"bbox"
:
[
823.5058461203419
,
512.0451382733748
,
27.545987206560085
,
59.58591899514306
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
0.558956408408079
,
0.6054486006477211
,
15.607344275188172
,
0.315
,
0.338
,
0.712
,
1.5596704833049395
],
"velo_cam3d"
:
[
0.07717355032092023
,
-0.0013264953734539453
],
"center2d"
:
[
837.1211093045397
,
541.5279466177432
,
15.607344275188172
],
"attribute_name"
:
"None"
,
"attribute_id"
:
8
,
"segmentation"
:
[],
"id"
:
6
},
{
"file_name"
:
"samples/CAM_BACK_LEFT/n015-2018-07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg"
,
"image_id"
:
"86e6806d626b4711a6d0f5015b090116"
,
"area"
:
11464.868967812941
,
"category_name"
:
"pedestrian"
,
"category_id"
:
7
,
"bbox"
:
[
1091.57108913607
,
427.8805195896188
,
76.29701915190844
,
150.2662763926101
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
3.953820859983739
,
0.11100574170732268
,
14.75668416993455
,
0.739
,
0.563
,
1.711
,
1.4550554479430875
],
"velo_cam3d"
:
[
0.10262495353364391
,
-0.0064695610507391095
],
"center2d"
:
[
1128.8366393735657
,
502.22946380348515
,
14.75668416993455
],
"attribute_name"
:
"pedestrian.sitting_lying_down"
,
"attribute_id"
:
4
,
"segmentation"
:
[],
"id"
:
7
},
{
"file_name"
:
"samples/CAM_BACK_LEFT/n015-2018-07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg"
,
"image_id"
:
"86e6806d626b4711a6d0f5015b090116"
,
"area"
:
10887.814254422945
,
"category_name"
:
"pedestrian"
,
"category_id"
:
7
,
"bbox"
:
[
1160.5755663065963
,
427.76823935577545
,
72.04645850373822
,
151.1221298109749
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
4.7798492054669035
,
0.1162134030605403
,
14.880252178422799
,
0.665
,
0.544
,
1.739
,
1.4550554479430875
],
"velo_cam3d"
:
[
0.08665208940588605
,
-0.12554131041835265
],
"center2d"
:
[
1195.8043058026105
,
502.5907820768639
,
14.880252178422799
],
"attribute_name"
:
"pedestrian.sitting_lying_down"
,
"attribute_id"
:
4
,
"segmentation"
:
[],
"id"
:
8
},
{
"file_name"
:
"samples/CAM_BACK_LEFT/n015-2018-07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg"
,
"image_id"
:
"86e6806d626b4711a6d0f5015b090116"
,
"area"
:
1840.396836351825
,
"category_name"
:
"traffic_cone"
,
"category_id"
:
8
,
"bbox"
:
[
976.5016497372175
,
515.0039595028874
,
30.627062877370918
,
60.09054292018379
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
2.4596094747766615
,
0.6404788797338883
,
15.49228428713527
,
0.338
,
0.309
,
0.712
,
1.461625206011101
],
"velo_cam3d"
:
[
0.02389033738396964
,
-0.0027892907804445547
],
"center2d"
:
[
991.6372663187118
,
544.7316983348808
,
15.49228428713527
],
"attribute_name"
:
"None"
,
"attribute_id"
:
8
,
"segmentation"
:
[],
"id"
:
9
},
{
"file_name"
:
"samples/CAM_BACK_RIGHT/n015-2018-07-18-11-07-57+0800__CAM_BACK_RIGHT__1531883530427893.jpg"
,
"image_id"
:
"ec7096278e484c9ebe6894a2ad5682e9"
,
"area"
:
130637.82232697189
,
"category_name"
:
"car"
,
"category_id"
:
0
,
"bbox"
:
[
806.290660237549
,
470.86948127698895
,
564.486943265249
,
231.42753589888787
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
2.041080764231013
,
0.5400087467741127
,
10.16381197333443
,
1.638
,
4.25
,
1.44
,
2.3008777344302445
],
"velo_cam3d"
:
[
-3.11975390859937
,
4.71824099865795
],
"center2d"
:
[
1060.1864774468488
,
568.1144351228712
,
10.16381197333443
],
"attribute_name"
:
"vehicle.moving"
,
"attribute_id"
:
5
,
"segmentation"
:
[],
"id"
:
10
}],
"categories"
:
[{
"id"
:
0
,
"name"
:
"car"
},
{
"id"
:
1
,
"name"
:
"truck"
},
{
"id"
:
2
,
"name"
:
"trailer"
},
{
"id"
:
3
,
"name"
:
"bus"
},
{
"id"
:
4
,
"name"
:
"construction_vehicle"
},
{
"id"
:
5
,
"name"
:
"bicycle"
},
{
"id"
:
6
,
"name"
:
"motorcycle"
},
{
"id"
:
7
,
"name"
:
"pedestrian"
},
{
"id"
:
8
,
"name"
:
"traffic_cone"
},
{
"id"
:
9
,
"name"
:
"barrier"
}]}
\ No newline at end of file
{
"images"
:
[{
"file_name"
:
"samples/CAM_BACK_LEFT/n015-2018-07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg"
,
"id"
:
"86e6806d626b4711a6d0f5015b090116"
,
"token"
:
"e93e98b63d3b40209056d129dc53ceee"
,
"cam2ego_rotation"
:
[
0.6924185592174665
,
-0.7031619420114925
,
-0.11648342771943819
,
0.11203317912370753
],
"cam2ego_translation"
:
[
1.03569100218
,
0.484795032713
,
1.59097014818
],
"ego2global_rotation"
:
[
-0.7495886280607293
,
-0.0077695335695504636
,
0.00829759813869316
,
-0.6618063711504101
],
"ego2global_translation"
:
[
1010.1328353833223
,
610.8111652918716
,
0.0
],
"cam_intrinsic"
:
[[
1256.7414812095406
,
0.0
,
792.1125740759628
],
[
0.0
,
1256.7414812095406
,
492.7757465151356
],
[
0.0
,
0.0
,
1.0
]],
"width"
:
1600
,
"height"
:
900
},
{
"file_name"
:
"samples/CAM_FRONT/n015-2018-07-18-11-07-57+0800__CAM_FRONT__1531883530412470.jpg"
,
"id"
:
"020d7b4f858147558106c504f7f31bef"
,
"token"
:
"e93e98b63d3b40209056d129dc53ceee"
,
"cam2ego_rotation"
:
[
0.4998015430569128
,
-0.5030316162024876
,
0.4997798114386805
,
-0.49737083824542755
],
"cam2ego_translation"
:
[
1.70079118954
,
0.0159456324149
,
1.51095763913
],
"ego2global_rotation"
:
[
-0.7495886280607293
,
-0.0077695335695504636
,
0.00829759813869316
,
-0.6618063711504101
],
"ego2global_translation"
:
[
1010.1328353833223
,
610.8111652918716
,
0.0
],
"cam_intrinsic"
:
[[
1266.417203046554
,
0.0
,
816.2670197447984
],
[
0.0
,
1266.417203046554
,
491.50706579294757
],
[
0.0
,
0.0
,
1.0
]],
"width"
:
1600
,
"height"
:
900
},
{
"file_name"
:
"samples/CAM_FRONT_RIGHT/n015-2018-07-18-11-07-57+0800__CAM_FRONT_RIGHT__1531883530420339.jpg"
,
"id"
:
"16d39ff22a8545b0a4ee3236a0fe1c20"
,
"token"
:
"e93e98b63d3b40209056d129dc53ceee"
,
"cam2ego_rotation"
:
[
0.2060347966337182
,
-0.2026940577919598
,
0.6824507824531167
,
-0.6713610884174485
],
"cam2ego_translation"
:
[
1.5508477543
,
-0.493404796419
,
1.49574800619
],
"ego2global_rotation"
:
[
-0.7495886280607293
,
-0.0077695335695504636
,
0.00829759813869316
,
-0.6618063711504101
],
"ego2global_translation"
:
[
1010.1328353833223
,
610.8111652918716
,
0.0
],
"cam_intrinsic"
:
[[
1260.8474446004698
,
0.0
,
807.968244525554
],
[
0.0
,
1260.8474446004698
,
495.3344268742088
],
[
0.0
,
0.0
,
1.0
]],
"width"
:
1600
,
"height"
:
900
},
{
"file_name"
:
"samples/CAM_FRONT_LEFT/n015-2018-07-18-11-07-57+0800__CAM_FRONT_LEFT__1531883530404844.jpg"
,
"id"
:
"24332e9c554a406f880430f17771b608"
,
"token"
:
"e93e98b63d3b40209056d129dc53ceee"
,
"cam2ego_rotation"
:
[
0.6757265034669446
,
-0.6736266522251881
,
0.21214015046209478
,
-0.21122827103904068
],
"cam2ego_translation"
:
[
1.52387798135
,
0.494631336551
,
1.50932822144
],
"ego2global_rotation"
:
[
-0.7495886280607293
,
-0.0077695335695504636
,
0.00829759813869316
,
-0.6618063711504101
],
"ego2global_translation"
:
[
1010.1328353833223
,
610.8111652918716
,
0.0
],
"cam_intrinsic"
:
[[
1272.5979470598488
,
0.0
,
826.6154927353808
],
[
0.0
,
1272.5979470598488
,
479.75165386361925
],
[
0.0
,
0.0
,
1.0
]],
"width"
:
1600
,
"height"
:
900
},
{
"file_name"
:
"samples/CAM_BACK/n015-2018-07-18-11-07-57+0800__CAM_BACK__1531883530437525.jpg"
,
"id"
:
"aab35aeccbda42de82b2ff5c278a0d48"
,
"token"
:
"e93e98b63d3b40209056d129dc53ceee"
,
"cam2ego_rotation"
:
[
0.5037872666382278
,
-0.49740249788611096
,
-0.4941850223835201
,
0.5045496097725578
],
"cam2ego_translation"
:
[
0.0283260309358
,
0.00345136761476
,
1.57910346144
],
"ego2global_rotation"
:
[
-0.7495886280607293
,
-0.0077695335695504636
,
0.00829759813869316
,
-0.6618063711504101
],
"ego2global_translation"
:
[
1010.1328353833223
,
610.8111652918716
,
0.0
],
"cam_intrinsic"
:
[[
809.2209905677063
,
0.0
,
829.2196003259838
],
[
0.0
,
809.2209905677063
,
481.77842384512485
],
[
0.0
,
0.0
,
1.0
]],
"width"
:
1600
,
"height"
:
900
},
{
"file_name"
:
"samples/CAM_BACK_RIGHT/n015-2018-07-18-11-07-57+0800__CAM_BACK_RIGHT__1531883530427893.jpg"
,
"id"
:
"ec7096278e484c9ebe6894a2ad5682e9"
,
"token"
:
"e93e98b63d3b40209056d129dc53ceee"
,
"cam2ego_rotation"
:
[
0.12280980120078765
,
-0.132400842670559
,
-0.7004305821388234
,
0.690496031265798
],
"cam2ego_translation"
:
[
1.0148780988
,
-0.480568219723
,
1.56239545128
],
"ego2global_rotation"
:
[
-0.7495886280607293
,
-0.0077695335695504636
,
0.00829759813869316
,
-0.6618063711504101
],
"ego2global_translation"
:
[
1010.1328353833223
,
610.8111652918716
,
0.0
],
"cam_intrinsic"
:
[[
1259.5137405846733
,
0.0
,
807.2529053838625
],
[
0.0
,
1259.5137405846733
,
501.19579884916527
],
[
0.0
,
0.0
,
1.0
]],
"width"
:
1600
,
"height"
:
900
}],
"annotations"
:
[{
"file_name"
:
"samples/CAM_FRONT/n015-2018-07-18-11-07-57+0800__CAM_FRONT__1531883530412470.jpg"
,
"image_id"
:
"020d7b4f858147558106c504f7f31bef"
,
"area"
:
85383.89600714693
,
"category_name"
:
"truck"
,
"category_id"
:
1
,
"bbox"
:
[
0.0
,
357.732750319127
,
342.56437261895206
,
249.24920053528984
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
-10.356295829208502
,
-0.06394600736590471
,
18.785737229926998
,
2.312
,
7.516
,
3.093
,
-0.5996975863361309
],
"velo_cam3d"
:
[
0.05742557272436208
,
0.06990201482350666
],
"center2d"
:
[
118.11016609440316
,
487.19622492451936
,
18.785737229926998
],
"attribute_name"
:
"vehicle.parked"
,
"attribute_id"
:
6
,
"segmentation"
:
[],
"id"
:
0
},
{
"file_name"
:
"samples/CAM_FRONT_LEFT/n015-2018-07-18-11-07-57+0800__CAM_FRONT_LEFT__1531883530404844.jpg"
,
"image_id"
:
"24332e9c554a406f880430f17771b608"
,
"area"
:
76274.38331683438
,
"category_name"
:
"truck"
,
"category_id"
:
1
,
"bbox"
:
[
1305.1296604171719
,
350.75901341602525
,
294.87033958282814
,
258.6709243959383
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
9.795917040815693
,
0.07538275380197612
,
19.033148401567978
,
2.312
,
7.516
,
3.093
,
-1.5546044317874126
],
"velo_cam3d"
:
[
0.09022854769195846
,
-0.0065096147400431695
],
"center2d"
:
[
1481.5919397578637
,
484.79190972187814
,
19.033148401567978
],
"attribute_name"
:
"vehicle.parked"
,
"attribute_id"
:
6
,
"segmentation"
:
[],
"id"
:
1
},
{
"file_name"
:
"samples/CAM_FRONT_LEFT/n015-2018-07-18-11-07-57+0800__CAM_FRONT_LEFT__1531883530404844.jpg"
,
"image_id"
:
"24332e9c554a406f880430f17771b608"
,
"area"
:
5248.9339273703135
,
"category_name"
:
"truck"
,
"category_id"
:
1
,
"bbox"
:
[
808.1218983320856
,
436.2076328554
,
75.28483638734929
,
69.72099800235912
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
0.7896581102503435
,
-0.32866532307883706
,
58.48166239420381
,
2.877
,
6.372
,
2.978
,
1.641180695066564
],
"velo_cam3d"
:
[
0.009938485543455734
,
0.0010084200213775884
],
"center2d"
:
[
843.7989524532317
,
472.5996886441534
,
58.48166239420381
],
"attribute_name"
:
"vehicle.parked"
,
"attribute_id"
:
6
,
"segmentation"
:
[],
"id"
:
2
},
{
"file_name"
:
"samples/CAM_FRONT_LEFT/n015-2018-07-18-11-07-57+0800__CAM_FRONT_LEFT__1531883530404844.jpg"
,
"image_id"
:
"24332e9c554a406f880430f17771b608"
,
"area"
:
25266.816070927107
,
"category_name"
:
"truck"
,
"category_id"
:
1
,
"bbox"
:
[
1133.5883785276196
,
424.4436001005383
,
202.5256666350731
,
124.75858734712807
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
9.39338221449255
,
0.19762751304835102
,
30.01455814405707
,
2.156
,
6.227
,
2.601
,
-1.4587684025759116
],
"velo_cam3d"
:
[
0.0
,
0.0
],
"center2d"
:
[
1224.88885277412
,
488.1309332180172
,
30.01455814405707
],
"attribute_name"
:
"vehicle.parked"
,
"attribute_id"
:
6
,
"segmentation"
:
[],
"id"
:
3
},
{
"file_name"
:
"samples/CAM_BACK/n015-2018-07-18-11-07-57+0800__CAM_BACK__1531883530437525.jpg"
,
"image_id"
:
"aab35aeccbda42de82b2ff5c278a0d48"
,
"area"
:
31981.88483023472
,
"category_name"
:
"car"
,
"category_id"
:
0
,
"bbox"
:
[
652.8710695836726
,
487.2457293359287
,
256.3734471348506
,
124.74725907715583
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
-0.48041137691585667
,
0.8426032188612489
,
12.27160016308813
,
1.871
,
4.478
,
1.456
,
-2.0402647554154876
],
"velo_cam3d"
:
[
-2.4043357184501866
,
-4.232358489028598
],
"center2d"
:
[
797.5400340802389
,
537.3418550489371
,
12.27160016308813
],
"attribute_name"
:
"vehicle.moving"
,
"attribute_id"
:
5
,
"segmentation"
:
[],
"id"
:
4
},
{
"file_name"
:
"samples/CAM_BACK_LEFT/n015-2018-07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg"
,
"image_id"
:
"86e6806d626b4711a6d0f5015b090116"
,
"area"
:
1874.1656394574547
,
"category_name"
:
"traffic_cone"
,
"category_id"
:
8
,
"bbox"
:
[
1084.536273989852
,
513.7567766430512
,
30.043100006470013
,
62.382565016720605
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
3.745641322414848
,
0.6321604510604618
,
15.319339525420224
,
0.3
,
0.291
,
0.734
,
1.4550554479430875
],
"velo_cam3d"
:
[
0.028202672296939114
,
-0.001622377193634249
],
"center2d"
:
[
1099.3910188026568
,
544.635832278593
,
15.319339525420224
],
"attribute_name"
:
"None"
,
"attribute_id"
:
8
,
"segmentation"
:
[],
"id"
:
5
},
{
"file_name"
:
"samples/CAM_BACK_LEFT/n015-2018-07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg"
,
"image_id"
:
"86e6806d626b4711a6d0f5015b090116"
,
"area"
:
1641.3529623313364
,
"category_name"
:
"traffic_cone"
,
"category_id"
:
8
,
"bbox"
:
[
823.5058461203419
,
512.0451382733748
,
27.545987206560085
,
59.58591899514306
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
0.558956408408079
,
0.6054486006477211
,
15.607344275188172
,
0.315
,
0.338
,
0.712
,
1.5596704833049395
],
"velo_cam3d"
:
[
0.07717355032092023
,
-0.0013264953734539453
],
"center2d"
:
[
837.1211093045397
,
541.5279466177432
,
15.607344275188172
],
"attribute_name"
:
"None"
,
"attribute_id"
:
8
,
"segmentation"
:
[],
"id"
:
6
},
{
"file_name"
:
"samples/CAM_BACK_LEFT/n015-2018-07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg"
,
"image_id"
:
"86e6806d626b4711a6d0f5015b090116"
,
"area"
:
11464.868967812941
,
"category_name"
:
"pedestrian"
,
"category_id"
:
7
,
"bbox"
:
[
1091.57108913607
,
427.8805195896188
,
76.29701915190844
,
150.2662763926101
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
3.953820859983739
,
0.11100574170732268
,
14.75668416993455
,
0.739
,
0.563
,
1.711
,
1.4550554479430875
],
"velo_cam3d"
:
[
0.10262495353364391
,
-0.0064695610507391095
],
"center2d"
:
[
1128.8366393735657
,
502.22946380348515
,
14.75668416993455
],
"attribute_name"
:
"pedestrian.sitting_lying_down"
,
"attribute_id"
:
4
,
"segmentation"
:
[],
"id"
:
7
},
{
"file_name"
:
"samples/CAM_BACK_LEFT/n015-2018-07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg"
,
"image_id"
:
"86e6806d626b4711a6d0f5015b090116"
,
"area"
:
10887.814254422945
,
"category_name"
:
"pedestrian"
,
"category_id"
:
7
,
"bbox"
:
[
1160.5755663065963
,
427.76823935577545
,
72.04645850373822
,
151.1221298109749
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
4.7798492054669035
,
0.1162134030605403
,
14.880252178422799
,
0.665
,
0.544
,
1.739
,
1.4550554479430875
],
"velo_cam3d"
:
[
0.08665208940588605
,
-0.12554131041835265
],
"center2d"
:
[
1195.8043058026105
,
502.5907820768639
,
14.880252178422799
],
"attribute_name"
:
"pedestrian.sitting_lying_down"
,
"attribute_id"
:
4
,
"segmentation"
:
[],
"id"
:
8
},
{
"file_name"
:
"samples/CAM_BACK_LEFT/n015-2018-07-18-11-07-57+0800__CAM_BACK_LEFT__1531883530447423.jpg"
,
"image_id"
:
"86e6806d626b4711a6d0f5015b090116"
,
"area"
:
1840.396836351825
,
"category_name"
:
"traffic_cone"
,
"category_id"
:
8
,
"bbox"
:
[
976.5016497372175
,
515.0039595028874
,
30.627062877370918
,
60.09054292018379
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
2.4596094747766615
,
0.6404788797338883
,
15.49228428713527
,
0.338
,
0.309
,
0.712
,
1.461625206011101
],
"velo_cam3d"
:
[
0.02389033738396964
,
-0.0027892907804445547
],
"center2d"
:
[
991.6372663187118
,
544.7316983348808
,
15.49228428713527
],
"attribute_name"
:
"None"
,
"attribute_id"
:
8
,
"segmentation"
:
[],
"id"
:
9
},
{
"file_name"
:
"samples/CAM_BACK_RIGHT/n015-2018-07-18-11-07-57+0800__CAM_BACK_RIGHT__1531883530427893.jpg"
,
"image_id"
:
"ec7096278e484c9ebe6894a2ad5682e9"
,
"area"
:
130637.82232697189
,
"category_name"
:
"car"
,
"category_id"
:
0
,
"bbox"
:
[
806.290660237549
,
470.86948127698895
,
564.486943265249
,
231.42753589888787
],
"iscrowd"
:
0
,
"bbox_cam3d"
:
[
2.041080764231013
,
0.5400087467741127
,
10.16381197333443
,
1.638
,
4.25
,
1.44
,
2.3008777344302445
],
"velo_cam3d"
:
[
-3.11975390859937
,
4.71824099865795
],
"center2d"
:
[
1060.1864774468488
,
568.1144351228712
,
10.16381197333443
],
"attribute_name"
:
"vehicle.moving"
,
"attribute_id"
:
5
,
"segmentation"
:
[],
"id"
:
10
}],
"categories"
:
[{
"id"
:
0
,
"name"
:
"car"
},
{
"id"
:
1
,
"name"
:
"truck"
},
{
"id"
:
2
,
"name"
:
"trailer"
},
{
"id"
:
3
,
"name"
:
"bus"
},
{
"id"
:
4
,
"name"
:
"construction_vehicle"
},
{
"id"
:
5
,
"name"
:
"bicycle"
},
{
"id"
:
6
,
"name"
:
"motorcycle"
},
{
"id"
:
7
,
"name"
:
"pedestrian"
},
{
"id"
:
8
,
"name"
:
"traffic_cone"
},
{
"id"
:
9
,
"name"
:
"barrier"
}]}
tests/test_metrics/test_losses.py
View file @
cbc2491f
...
...
@@ -95,7 +95,7 @@ def test_paconv_regularization_loss():
set_random_seed
(
0
,
True
)
model
=
ToyModel
()
# reduction shoul
e
be in ['none', 'mean', 'sum']
# reduction shoul
d
be in ['none', 'mean', 'sum']
with
pytest
.
raises
(
AssertionError
):
paconv_corr_loss
=
PAConvRegularizationLoss
(
reduction
=
'l2'
)
...
...
@@ -116,7 +116,7 @@ def test_paconv_regularization_loss():
def
test_uncertain_smooth_l1_loss
():
from
mmdet3d.models.losses
import
UncertainL1Loss
,
UncertainSmoothL1Loss
# reduction shoul
e
be in ['none', 'mean', 'sum']
# reduction shoul
d
be in ['none', 'mean', 'sum']
with
pytest
.
raises
(
AssertionError
):
uncertain_l1_loss
=
UncertainL1Loss
(
reduction
=
'l2'
)
with
pytest
.
raises
(
AssertionError
):
...
...
tests/test_utils/test_box3d.py
View file @
cbc2491f
...
...
@@ -656,7 +656,7 @@ def test_boxes_conversion():
dtype
=
torch
.
float32
)
rt_mat
=
rect
@
Trv2c
# test coversion with Box type
# test co
n
version with Box type
cam_to_lidar_box
=
Box3DMode
.
convert
(
camera_boxes
,
Box3DMode
.
CAM
,
Box3DMode
.
LIDAR
,
rt_mat
.
inverse
())
assert
torch
.
allclose
(
cam_to_lidar_box
.
tensor
,
expected_tensor
)
...
...
tools/data_converter/kitti_converter.py
View file @
cbc2491f
...
...
@@ -493,7 +493,7 @@ def get_2d_boxes(info, occluded, mono3d=True):
def
generate_record
(
ann_rec
,
x1
,
y1
,
x2
,
y2
,
sample_data_token
,
filename
):
"""Generate one 2D annotation record given various information
s
on top of
"""Generate one 2D annotation record given various information on top of
the 2D bounding box coordinates.
Args:
...
...
@@ -508,7 +508,7 @@ def generate_record(ann_rec, x1, y1, x2, y2, sample_data_token, filename):
Returns:
dict: A sample 2D annotation record.
- file_name (str): f
l
ie name
- file_name (str): fi
l
e name
- image_id (str): sample data token
- area (float): 2d box area
- category_name (str): category name
...
...
tools/data_converter/nuscenes_converter.py
View file @
cbc2491f
...
...
@@ -565,7 +565,7 @@ def post_process_coords(
def
generate_record
(
ann_rec
:
dict
,
x1
:
float
,
y1
:
float
,
x2
:
float
,
y2
:
float
,
sample_data_token
:
str
,
filename
:
str
)
->
OrderedDict
:
"""Generate one 2D annotation record given various information
s
on top of
"""Generate one 2D annotation record given various information on top of
the 2D bounding box coordinates.
Args:
...
...
@@ -580,7 +580,7 @@ def generate_record(ann_rec: dict, x1: float, y1: float, x2: float, y2: float,
Returns:
dict: A sample 2D annotation record.
- file_name (str): f
l
ie name
- file_name (str): fi
l
e name
- image_id (str): sample data token
- area (float): 2d box area
- category_name (str): category name
...
...
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment