Commit cb7c679d authored by VVsssssk's avatar VVsssssk Committed by ZwwWayne
Browse files

[Benchmark] Add PV RCNN benchmark (#2045)

* fix a bug

* fix a batch inference bug

* fix docs

* add pvrcnn benchmark

* fix

* add link

* add

* fix lint
parent c543b48d
......@@ -159,6 +159,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
<li><a href="configs/point_rcnn">PointRCNN (CVPR'2019)</a></li>
<li><a href="configs/parta2">Part-A2 (TPAMI'2020)</a></li>
<li><a href="configs/centerpoint">CenterPoint (CVPR'2021)</a></li>
<li><a href="configs/pv_rcnn">PV-RCNN (CVPR'2020)</a></li>
</ul>
<li><b>Indoor</b></li>
<ul>
......@@ -227,6 +228,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
| MonoFlex | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ |
| SA-SSD | ☐ | ☐ | ☐ | ✗ | ✗ | ☐ | ☐ | ☐ | ✗ | ✗ |
| FCAF3D | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ |
| PV-RCNN | ☐ | ☐ | ☐ | ✗ | ✗ | ☐ | ☐ | ☐ | ✗ | ✗ |
**Note:** All the about **300+ models, methods of 40+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.
......
# PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
> [PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection](https://arxiv.org/abs/1912.13192)
<!-- [ALGORITHM] -->
## Introduction
3D object detection has been receiving increasing attention from both industry and academia thanks to its wide applications in various fields such as autonomous driving and robotics. LiDAR sensors are widely adopted in autonomous driving vehicles and robots for capturing 3D scene information as sparse and irregular point clouds, which provide vital cues for 3D scene perception and understanding. In this paper, we propose to achieve high performance 3D object detection by designing novel point-voxel integrated networks to learn better 3D features from irregular point clouds.
<div align=center>
<img src="https://user-images.githubusercontent.com/88368822/202114244-ccf52f56-b8c9-4f1b-9cc2-80c7a9952c99.png" width="800"/>
</div>
## Results and models
### KITTI
| Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :---------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./pv_rcnn_8xb2-80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 5.4 | | 72.28 | [model](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/pv_rcnn/pv_rcnn_8xb2-80e_kitti-3d-3class/pv_rcnn_8xb2-80e_kitti-3d-3class_20221117_234428-b384d22f.pth) \\ [log](https://download.openmmlab.com/mmdetection3d/v1.1.0_models/pv_rcnn/pv_rcnn_8xb2-80e_kitti-3d-3class/pv_rcnn_8xb2-80e_kitti-3d-3class_20221117_234428.json) |
Note: mAP represents AP11 results on 3 Class under the moderate setting.
Detailed performance on KITTI 3D detection (3D) is as follows, evaluated by AP11 metric:
| | Easy | Moderate | Hard |
| ---------- | :---: | :------: | :---: |
| Car | 89.20 | 83.72 | 78.79 |
| Pedestrian | 66.64 | 59.84 | 55.33 |
| Cyclist | 87.25 | 73.27 | 69.61 |
## Citation
```latex
@article{ShaoshuaiShi2020PVRCNNPF,
title={PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection},
author={Shaoshuai Shi and Chaoxu Guo and Li Jiang and Zhe Wang and Jianping Shi and Xiaogang Wang and Hongsheng Li},
journal={computer vision and pattern recognition},
year={2020}
}
```
Collections:
- Name: PV-RCNN
Metadata:
Training Data: KITTI
Training Techniques:
- AdamW
Training Resources: 8x A100 GPUs
Architecture:
- Feature Pyramid Network
Paper:
URL: https://arxiv.org/abs/1912.13192
Title: 'PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection'
README: configs/pv_rcnn/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/mmdet3d/models/detectors/pv_rcnn.py#L12
Version: v1.1.0rc2
Models:
- Name: pv_rcnn_8xb2-80e_kitti-3d-3class
In Collection: PV-RCNN
Config: configs/pv_rcnn/pv_rcnn_8xb2-80e_kitti-3d-3class.py
Metadata:
Training Memory (GB): 5.4
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
mAP: 72.28
Weights: <https://download.openmmlab.com/mmdetection3d/v1.1.0_models/pv_rcnn/pv_rcnn_8xb2-80e_kitti-3d-3class/pv_rcnn_8xb2-80e_kitti-3d-3class_20221117_234428-b384d22f.pth
......@@ -108,6 +108,10 @@ Please refer to [SA-SSD](https://github.com/open-mmlab/mmdetection3d/blob/master
Please refer to [FCAF3D](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/fcaf3d) for details. We provide FCAF3D baselines on the ScanNet, S3DIS, and SUN RGB-D datasets.
### PV-RCNN
Please refer to [PV-RCNN](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/configs/pv_rcnn) for details. We provide PV-RCNN baselines on the KITTI dataset.
### Mixed Precision (FP16) Training
Please refer to [Mixed Precision (FP16) Training on PointPillars](https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/pointpillars/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py) for details.
......@@ -17,7 +17,7 @@ class TestPVRCNN(unittest.TestCase):
DefaultScope.get_instance('test_pvrcnn', scope_name='mmdet3d')
setup_seed(0)
pvrcnn_cfg = get_detector_cfg(
'pvrcnn/pvrcnn_8xb2-80e_kitti-3d-3class.py')
'pv_rcnn/pv_rcnn_8xb2-80e_kitti-3d-3class.py')
model = MODELS.build(pvrcnn_cfg)
num_gt_instance = 2
packed_inputs = create_detector_inputs(num_gt_instance=num_gt_instance)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment