Commit c543b48d authored by Jingwei Zhang's avatar Jingwei Zhang Committed by ZwwWayne
Browse files

[Docs] Update all the metafiles acoording to README (#2006)

* update centerpoint, dgcnn, fcos3d and free_anchor metafile

* check all metafile in configs

* update centerpoint, pointpillars and second yml

* rename PartA2 to parta2 in the name of config

* update metafile in nuimages

* update readme in nuimages
parent 2072a9df
......@@ -73,11 +73,11 @@ GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=5 ./tools/slurm_test.sh $PARTITION dv_mvx-f
$CHECKPOINT_DIR/configs/mvxnet/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class.py/latest.pth --eval map \
2>&1|tee $CHECKPOINT_DIR/configs/mvxnet/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class.py/FULL_LOG.txt &
echo 'configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py' &
mkdir -p $CHECKPOINT_DIR/configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=5 ./tools/slurm_test.sh $PARTITION hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py \
$CHECKPOINT_DIR/configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py/latest.pth --eval map \
2>&1|tee $CHECKPOINT_DIR/configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py/FULL_LOG.txt &
echo 'configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py' &
mkdir -p $CHECKPOINT_DIR/configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=5 ./tools/slurm_test.sh $PARTITION hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py \
$CHECKPOINT_DIR/configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py/latest.pth --eval map \
2>&1|tee $CHECKPOINT_DIR/configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py/FULL_LOG.txt &
echo 'configs/pointnet2/pointnet2_msg_2xb16-cosine-80e_s3dis-seg.py' &
mkdir -p $CHECKPOINT_DIR/configs/pointnet2/pointnet2_msg_2xb16-cosine-80e_s3dis-seg.py
......
......@@ -73,11 +73,11 @@ GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=5 ./tools/slurm_train.sh $PARTITION dv_mvx-
$CHECKPOINT_DIR/configs/mvxnet/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class.py --cfg-options checkpoint_config.max_keep_ckpts=1 \
2>&1|tee $CHECKPOINT_DIR/configs/mvxnet/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class.py/FULL_LOG.txt &
echo 'configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py' &
mkdir -p $CHECKPOINT_DIR/configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=5 ./tools/slurm_train.sh $PARTITION hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py \
$CHECKPOINT_DIR/configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py --cfg-options checkpoint_config.max_keep_ckpts=1 \
2>&1|tee $CHECKPOINT_DIR/configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py/FULL_LOG.txt &
echo 'configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py' &
mkdir -p $CHECKPOINT_DIR/configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=5 ./tools/slurm_train.sh $PARTITION hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py \
$CHECKPOINT_DIR/configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py --cfg-options checkpoint_config.max_keep_ckpts=1 \
2>&1|tee $CHECKPOINT_DIR/configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py/FULL_LOG.txt &
echo 'configs/pointnet2/pointnet2_msg_2xb16-cosine-80e_s3dis-seg.py' &
mkdir -p $CHECKPOINT_DIR/configs/pointnet2/pointnet2_msg_2xb16-cosine-80e_s3dis-seg.py
......
......@@ -104,23 +104,25 @@ data = dict(
### CenterPoint
| Backbone | Voxel type (voxel size) | Dcn | Circular nms | Mem (GB) | Inf time (fps) | mAP | NDS | Download |
| :----------------------------------------------------------------------------------------: | :---------------------: | :-: | :----------: | :------: | :------------: | :---: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./centerpoint_voxel01_second_secfpn_head-circlenms_8xb4-cyclic-20e_nus-3d.py) | voxel (0.1) | ✗ | ✓ | 4.9 | | 56.19 | 64.43 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20210815_085857-9ba7f3a5.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20210815_085857.log.json) |
| above w/o circle nms | voxel (0.1) | ✗ | ✗ | | | 56.56 | 64.46 | |
| [SECFPN](./centerpoint_voxel01_second_secfpn_head-dcn-circlenms_8xb4-cyclic-20e_nus-3d.py) | voxel (0.1) | ✓ | ✓ | 5.2 | | 56.34 | 64.81 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20210814_060754-c9d535d2.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20210814_060754.log.json) |
| above w/o circle nms | voxel (0.1) | ✓ | ✗ | | | 56.60 | 64.90 | |
| [SECFPN](./centerpoint_voxel0075_second_secfpn_head-circlenms_8xb4-cyclic-20e_nus-3d.py) | voxel (0.075) | ✗ | ✓ | 7.8 | | 57.34 | 65.23 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20210814_113418-76ae0cf0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20210814_113418.log.json) |
| above w/o circle nms | voxel (0.075) | ✗ | ✗ | | | 57.63 | 65.39 | |
| [SECFPN](./centerpoint_voxel0075-second-secfpn-head-dcn=circlenms_8xb4-cyclic-20e_nus.py) | voxel (0.075) | ✓ | ✓ | 8.5 | | 57.27 | 65.58 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20210827_161135-1782af3e.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20210827_161135.log.json) |
| above w/o circle nms | voxel (0.075) | ✓ | ✗ | | | 57.43 | 65.63 | |
| above w/ double flip | voxel (0.075) | ✓ | ✗ | | | 59.73 | 67.39 | |
| above w/ scale tta | voxel (0.075) | ✓ | ✗ | | | 60.43 | 67.65 | |
| above w/ circle nms w/o scale tta | voxel (0.075) | ✓ | ✗ | | | 59.52 | 67.24 | |
| [SECFPN](./centerpoint_pillar02_second_secfpn_head-circlenms_8xb4-cyclic-20e_nus-3d.py) | pillar (0.2) | ✗ | ✓ | 4.4 | | 49.07 | 59.66 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus_20210816_064624-0f3299c0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus_20210816_064624.log.json) |
| above w/o circle nms | pillar (0.2) | ✗ | ✗ | | | 49.12 | 59.66 | |
| [SECFPN](./centerpoint_pillar02_second_secfpn_head-dcn_8xb4-cyclic-20e_nus-3d.py) | pillar (0.2) | ✓ | ✗ | 4.6 | | 48.8 | 59.67 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus_20210815_202702-f03ab9e4.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus_20210815_202702.log.json) |
| above w/ circle nms | pillar (0.2) | ✓ | ✓ | | | 48.79 | 59.65 | |
| Backbone | Voxel type (voxel size) | Dcn | Circular nms | Mem (GB) | Inf time (fps) | mAP | NDS | Download |
| :---------------------------------------------------------------------------------: | :---------------------: | :-: | :----------: | :------: | :------------: | :---: | :---: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py) | voxel (0.1) | ✗ | ✓ | 5.2 | | 56.11 | 64.61 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20220810_030004-9061688e.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20220810_030004.log) |
| above w/o circle nms | voxel (0.1) | ✗ | ✗ | | | x | x | |
| [SECFPN](./centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py) | voxel (0.1) | ✓ | ✓ | 5.5 | | 56.10 | 64.69 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20220810_052355-a6928835.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20220810_052355.log) |
| above w/o circle nms | voxel (0.1) | ✓ | ✗ | | | x | x | |
| [SECFPN](./centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus.py) | voxel (0.075) | ✗ | ✓ | 8.2 | | 56.54 | 65.17 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20220810_011659-04cb3a3b.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20220810_011659.log) |
| above w/o circle nms | voxel (0.075) | ✗ | ✗ | | | 57.63 | 65.39 | |
| [SECFPN](./centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus.py) | voxel (0.075) | ✓ | ✓ | 8.7 | | 56.92 | 65.27 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20220810_025930-657f67e0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20220810_025930.log) |
| above w/o circle nms | voxel (0.075) | ✓ | ✗ | | | 57.43 | 65.63 | |
| above w/ double flip | voxel (0.075) | ✓ | ✗ | | | 59.73 | 67.39 | |
| above w/ scale tta | voxel (0.075) | ✓ | ✗ | | | 60.43 | 67.65 | |
| above w/ circle nms w/o scale tta | voxel (0.075) | ✓ | ✗ | | | 59.52 | 67.24 | |
| [SECFPN](./centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus.py) | pillar (0.2) | ✗ | ✓ | 4.6 | | 48.70 | 59.62 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus_20220811_031844-191a3822.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus_20220811_031844.log) |
| above w/o circle nms | pillar (0.2) | ✗ | ✗ | | | 49.12 | 59.66 | |
| [SECFPN](./centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus.py) | pillar (0.2) | ✓ | ✗ | 4.9 | | 48.38 | 59.79 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus_20220811_045458-808e69ad.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus_20220811_045458.log) |
| above w/ circle nms | pillar (0.2) | ✓ | ✓ | | | 48.79 | 59.65 | |
**Note:** The model performance after coordinate refactor is slightly different (+/- 0.5 - 1 mAP/NDS) from the performance before coordinate refactor in v0.x branch. We are exploring the reason behind. |
## Citation
......
......@@ -16,80 +16,80 @@ Collections:
Version: v0.6.0
Models:
- Name: centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus
- Name: centerpoint_voxel01_second_secfpn_head-circlenms_8xb4-cyclic-20e_nus-3d
In Collection: CenterPoint
Config: configs/centerpoint/centerpoint_voxel01_second_secfpn_head-circlenms_8xb4-cyclic-20e_nus-3d.py
Metadata:
Training Memory (GB): 4.9
metadata:
Training Memory (GB): 5.2
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 56.19
NDS: 64.43
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20201001_135205-5db91e00.pth
mAP: 56.11
NDS: 64.61
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20220810_030004-9061688e.pth
- Name: centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus
- Name: centerpoint_voxel01_second_secfpn_head-dcn-circlenms_8xb4-cyclic-20e_nus-3d
In Collection: CenterPoint
Config: configs/centerpoint/centerpoint_voxel01_second_secfpn_head-dcn-circlenms_8xb4-cyclic-20e_nus-3d.py
Metadata:
Training Memory (GB): 5.2
Training Memory (GB): 5.5
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 56.34
NDS: 64.81
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20201004_075317-26d8176c.pth
mAP: 56.10
NDS: 64.69
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_01voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20220810_052355-a6928835.pth
- Name: centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus
- Name: centerpoint_voxel0075_second_secfpn_head-circlenms_8xb4-cyclic-20e_nus-3d
In Collection: CenterPoint
Config: configs/centerpoint/centerpoint_voxel0075_second_secfpn_head-circlenms_8xb4-cyclic-20e_nus-3d.py
Metadata:
Training Memory (GB): 7.8
Training Memory (GB): 8.2
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 57.34
NDS: 65.23
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20200925_230905-358fbe3b.pth
mAP: 56.54
NDS: 65.17
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus_20220810_011659-04cb3a3b.pth
- Name: centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus
- Name: centerpoint_voxel0075_second_secfpn_head-dcn-circlenms_8xb4-cyclic-20e_nus-3d
In Collection: CenterPoint
Config: configs/centerpoint/centerpoint_voxel0075_second_secfpn_head-dcn-circlenms_8xb4-cyclic-20e_nus-3d.py
Metadata:
Training Memory (GB): 8.5
Training Memory (GB): 8.7
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 57.27
NDS: 65.58
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20200930_201619-67c8496f.pth
mAP: 56.92
NDS: 65.27
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus/centerpoint_0075voxel_second_secfpn_dcn_circlenms_4x8_cyclic_20e_nus_20220810_025930-657f67e0.pth
- Name: centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus
- Name: centerpoint_pillar02_second_secfpn_head-circlenms_8xb4-cyclic-20e_nus-3d
In Collection: CenterPoint
Config: configs/centerpoint/centerpoint_pillar02_second_secfpn_head-circlenms_8xb4-cyclic-20e_nus-3d.py
Metadata:
Training Memory (GB): 4.4
Training Memory (GB): 4.6
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 49.07
NDS: 59.66
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_01voxel_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus_20201004_170716-a134a233.pth
mAP: 48.70
NDS: 59.62
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_circlenms_4x8_cyclic_20e_nus_20220811_031844-191a3822.pth
- Name: centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus
- Name: centerpoint_pillar02_second_secfpn_head-dcn_8xb4-cyclic-20e_nus-3d
In Collection: CenterPoint
Config: configs/centerpoint/centerpoint_pillar02_second_secfpn_head-dcn_8xb4-cyclic-20e_nus-3d.py
Metadata:
Training Memory (GB): 4.6
Training Memory (GB): 4.9
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 48.8
NDS: 59.67
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus_20200930_103722-3bb135f2.pth
mAP: 48.38
NDS: 59.79
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/centerpoint/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus/centerpoint_02pillar_second_secfpn_dcn_4x8_cyclic_20e_nus_20220811_045458-808e69ad.pth
......@@ -52,7 +52,7 @@ We also provide visualization functions to show the monocular 3D detection resul
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download |
| :-------------------------------------------------------------------------------------: | :-----: | :------: | :------------: | :--: | :--: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| \[ResNet101 w/ DCN\](./fcos3d_r101-caffe- fpn-head-gn-dcn_8xb2-1x_nus-mono3d.py) | 1x | 8.69 | | 29.8 | 37.7 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813.log.json) |
| \[ResNet101 w/ DCN\](./fcos3d_r101-caffe-dcn_fpn_head-gn_8xb2-1x_nus-mono3d.py) | 1x | 8.69 | | 29.8 | 37.7 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813.log.json) |
| [above w/ finetune](./fcos3d_r101-caffe-dcn_fpn_head-gn_8xb2-1x_nus-mono3d_finetune.py) | 1x | 8.69 | | 32.1 | 39.5 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune_20210717_095645-8d806dc2.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune_20210717_095645.log.json) |
| above w/ tta | 1x | 8.69 | | 33.1 | 40.3 | |
......
......@@ -27,7 +27,7 @@ Models:
Metrics:
mAP: 29.9
NDS: 37.3
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210425_181341-8d5a21fe.pth
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_20210715_235813-4bed5239.pth
- Name: fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune
In Collection: FCOS3D
......@@ -40,4 +40,4 @@ Models:
Metrics:
mAP: 32.1
NDS: 39.3
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune_20210427_091419-35aaaad0.pth
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d_finetune_20210717_095645-8d806dc2.pth
......@@ -17,7 +17,20 @@ Collections:
Version: v0.5.0
Models:
- Name: hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d
- Name: pointpillars_hv_fpn_sbn-all_8xb4-2x_nus-3d
In Collection: FreeAnchor
Config: pointpillars/pointpillars_hv_fpn_sbn-all_8xb4-2x_nus-3d.py
Metadata:
Training Memory (GB): 17.1
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 40.0
NDS: 53.3
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth
- Name: pointpillars_hv_fpn_head-free-anchor_sbn-all_8xb4-2x_nus-3d
In Collection: FreeAnchor
Config: free_anchor/pointpillars_hv_fpn_head-free-anchor_sbn-all_8xb4-2x_nus-3d.py
Metadata:
......@@ -28,9 +41,22 @@ Models:
Metrics:
mAP: 43.82
NDS: 54.86
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210816_163441-ae0897e7.pth
- Name: pointpillars_hv_regnet-400mf_fpn_sbn-all_8xb4-2x_nus-3d
In Collection: FreeAnchor
Config: configs/regnet/pointpillars_hv_regnet-400mf_fpn_sbn-all_8xb4-2x_nus-3d.py
Metadata:
Training Memory (GB): 17.3
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 44.8
NDS: 56.4
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210816_163441-ae0897e7.pth
- Name: hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d
- Name: pointpillars_hv_regnet-400mf_fpn_head-free-anchor_sbn-all_8xb4-2x_nus-3d
In Collection: FreeAnchor
Config: configs/free_anchor/pointpillars_hv_regnet-400mf_fpn_head-free-anchor_sbn-all_8xb4-2x_nus-3d.py
Metadata:
......@@ -56,7 +82,7 @@ Models:
NDS: 61.49
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210828_025608-bfbd506e.pth
- Name: hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d
- Name: pointpillars_hv_regnet-1.6gf_fpn_head-free-anchor_sbn-all_8xb4-strong-aug-3x_nus-3d
In Collection: FreeAnchor
Config: configs/free_anchor/pointpillars_hv_regnet-1.6gf_fpn_head-free-anchor_sbn-all_8xb4-strong-aug-3x_nus-3d.py
Metadata:
......@@ -69,7 +95,7 @@ Models:
NDS: 62.45
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d_20210827_184909-14d2dbd1.pth
- Name: hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d
- Name: pointpillars_hv_regnet-3.2gf_fpn_head-free-anchor_sbn-all_8xb4-2x_nus-3d
In Collection: FreeAnchor
Config: configs/free_anchor/pointpillars_hv_regnet-3.2gf_fpn_head-free-anchor_sbn-all_8xb4-2x_nus-3d.py
Metadata:
......@@ -82,7 +108,7 @@ Models:
NDS: 61.94
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20210827_181237-e385c35a.pth
- Name: hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d
- Name: pointpillars_hv_regnet-3.2gf_fpn_head-free-anchor_sbn-all_8xb4-strong-aug-3x_nus-3d
In Collection: FreeAnchor
Config: configs/free_anchor/pointpillars_hv_regnet-3.2gf_fpn_head-free-anchor_sbn-all_8xb4-strong-aug-3x_nus-3d.py
Metadata:
......
......@@ -26,5 +26,5 @@ Models:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
mAP: 21.98
mAP: 21.86
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/monoflex/monoflex_dla34_pytorch_dlaneck_gn-all_2x4_6x_kitti-mono3d_20211228_027553-d46d9bb0.pth
# NuImages Results
# Mask R-CNN
<!-- [DATASET] -->
> [Mask R-CNN](https://arxiv.org/abs/1703.06870)
<!-- [ALGORITHM] -->
## Abstract
We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without bells and whistles, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition.
<div align=center>
<img src="https://user-images.githubusercontent.com/40661020/143967081-c2552bed-9af2-46c4-ae44-5b3b74e5679f.png"/>
</div>
## Introduction
......
Collections:
- Name: Mask R-CNN
Metadata:
Training Data: nuImages
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x TITAN Xp
Architecture:
- Softmax
- RPN
- Convolution
- Dense Connections
- FPN
- ResNet
- RoIAlign
Paper:
URL: https://arxiv.org/abs/1703.06870v3
Title: "Mask R-CNN"
README: configs/nuimages/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/mask_rcnn.py#L6
Version: v2.0.0
Models:
- Name: mask_rcnn_r50_fpn_1x_nuim
In Collection: Mask R-CNN
......
......@@ -27,3 +27,16 @@ Models:
Metrics:
mIoU: 66.65
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class_20210729_200615-2147b2d1.pth
- Name: paconv_ssg-cuda_8xb8-cosine-200e_s3dis-seg
In Collection: PAConv
Config: configs/paconv/paconv_ssg-cuda_8xb8-cosine-200e_s3dis-seg.py
Metadata:
Training Data: S3DIS
Training Memory (GB): 5.8
Results:
- Task: 3D Semantic Segmentation
Dataset: S3DIS
Metrics:
mIoU: 66.65
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class_20210802_171802-e5ea9bb9.pth
......@@ -22,8 +22,8 @@ We implement Part-A^2 and provide its results and checkpoints on KITTI dataset.
| Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :-------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 4.1 | | 68.33 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017.log.json) |
| [SECFPN](./PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py) | Car | cyclic 80e | 4.0 | | 79.08 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017-cb7ff621.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017.log.json) |
| [SECFPN](./parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 4.1 | | 68.33 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017.log.json) |
| [SECFPN](./parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py) | Car | cyclic 80e | 4.0 | | 79.08 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017-cb7ff621.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017.log.json) |
## Citation
......
......@@ -16,9 +16,9 @@ Collections:
Version: v0.5.0
Models:
- Name: hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class
- Name: parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class
In Collection: Part-A^2
Config: configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
Config: configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py
Metadata:
Training Memory (GB): 4.1
Results:
......@@ -28,9 +28,9 @@ Models:
mAP: 68.33
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth
- Name: hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car
- Name: parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car
In Collection: Part-A^2
Config: configs/parta2/PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py
Config: configs/parta2/parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-car.py
Metadata:
Training Memory (GB): 4.0
Results:
......
_base_ = './PartA2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py'
_base_ = './parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py'
point_cloud_range = [0, -40, -3, 70.4, 40, 1] # velodyne coordinates, x, y, z
......
......@@ -16,7 +16,7 @@ Collections:
Version: v1.0.0
Models:
- Name: pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d
- Name: pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d
In Collection: PGD
Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d.py
Metadata:
......@@ -28,7 +28,7 @@ Models:
mAP: 18.33
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d_20211022_102608-8a97533b.pth
- Name: pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d
- Name: pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d
In Collection: PGD
Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d.py
Metadata:
......@@ -41,7 +41,7 @@ Models:
NDS: 39.3
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_20211116_195350-f4b5eec2.pth
- Name: pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune
- Name: pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d_finetune
In Collection: PGD
Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-1x_nus-mono3d_finetune.py
Metadata:
......@@ -54,7 +54,7 @@ Models:
NDS: 41.1
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune_20211118_093245-fd419681.pth
- Name: pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d
- Name: pgd_r101-caffe_fpn_head-gn_16xb2-2x_nus-mono3d
In Collection: PGD
Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-2x_nus-mono3d.py
Metadata:
......@@ -67,7 +67,7 @@ Models:
NDS: 40.9
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_20211112_125314-cb677266.pth
- Name: pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune
- Name: pgd_r101-caffe_fpn_head-gn_16xb2-2x_nus-mono3d_finetune
In Collection: PGD
Config: configs/pgd/pgd_r101-caffe_fpn_head-gn_16xb2-2x_nus-mono3d_finetune.py
Metadata:
......
......@@ -16,7 +16,7 @@ Collections:
Version: v1.0.0
Models:
- Name: point-rcnn_8xb2_kitti-3d-3class.py
- Name: point-rcnn_8xb2_kitti-3d-3class
In Collection: PointRCNN
Config: configs/point_rcnn/point-rcnn_8xb2_kitti-3d-3class.py
Metadata:
......
......@@ -15,7 +15,7 @@ Collections:
Version: v0.14.0
Models:
- Name: pointnet2_ssg_2xb16-cosine-200e_scannet-seg-xyz-only.py
- Name: pointnet2_ssg_2xb16-cosine-200e_scannet-seg-xyz-only
In Collection: PointNet++
Config: configs/pointnet/pointnet2_ssg_2xb16-cosine-200e_scannet-seg-xyz-only.py
Metadata:
......@@ -28,7 +28,7 @@ Models:
mIoU: 53.91
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143628-4e341a48.pth
- Name: pointnet2_ssg_2xb16-cosine-200e_scannet-seg.py
- Name: pointnet2_ssg_2xb16-cosine-200e_scannet-seg
In Collection: PointNet++
Config: configs/pointnet/pointnet2_ssg_2xb16-cosine-200e_scannet-seg.py
Metadata:
......@@ -41,7 +41,7 @@ Models:
mIoU: 54.44
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth
- Name: pointnet2_msg_2xb16-cosine-250e_scannet-seg-xyz-only.py
- Name: pointnet2_msg_2xb16-cosine-250e_scannet-seg-xyz-only
In Collection: PointNet++
Config: configs/pointnet/pointnet2_msg_2xb16-cosine-250e_scannet-seg-xyz-only.py
Metadata:
......@@ -54,7 +54,7 @@ Models:
mIoU: 54.26
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class_20210514_143838-b4a3cf89.pth
- Name: pointnet2_msg_2xb16-cosine-250e_scannet-seg.py
- Name: pointnet2_msg_2xb16-cosine-250e_scannet-seg
In Collection: PointNet++
Config: configs/pointnet/pointnet2_msg_2xb16-cosine-250e_scannet-seg.py
Metadata:
......@@ -67,7 +67,7 @@ Models:
mIoU: 55.05
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class_20210514_144009-24477ab1.pth
- Name: pointnet2_ssg_2xb16-cosine-50e_s3dis-seg.py
- Name: pointnet2_ssg_2xb16-cosine-50e_s3dis-seg
In Collection: PointNet++
Config: configs/pointnet/pointnet2_ssg_2xb16-cosine-50e_s3dis-seg.py
Metadata:
......@@ -80,7 +80,7 @@ Models:
mIoU: 56.93
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class_20210514_144205-995d0119.pth
- Name: pointnet2_msg_2xb16-cosine-80e_s3dis-seg.py
- Name: pointnet2_msg_2xb16-cosine-80e_s3dis-seg
In Collection: PointNet++
Config: configs/pointnet/pointnet2_msg_2xb16-cosine-80e_s3dis-seg.py
Metadata:
......
......@@ -14,7 +14,7 @@ Collections:
Version: v0.6.0
Models:
- Name: hv_pointpillars_secfpn_6x8_160e_kitti-3d-car
- Name: pointpillars_hv_secfpn_8xb6-160e_kitti-3d-car
In Collection: PointPillars
Config: configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-car.py
Metadata:
......@@ -28,7 +28,7 @@ Models:
AP: 77.6
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.pth
- Name: hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class
- Name: pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class
In Collection: PointPillars
Config: configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py
Metadata:
......@@ -42,7 +42,7 @@ Models:
AP: 64.07
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class_20220301_150306-37dc2420.pth
- Name: hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d
- Name: pointpillars_hv_secfpn_sbn-all_8xb4-2x_nus-3d
In Collection: PointPillars
Config: configs/pointpillars/pointpillars_hv_secfpn_sbn-all_8xb4-2x_nus-3d.py
Metadata:
......@@ -57,7 +57,29 @@ Models:
NDS: 49.1
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20210826_225857-f19d00a3.pth
- Name: hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d
- Name: pointpillars_hv_secfpn_sbn-all_8xb4-amp-2x_nus-3d
In Collection: PointPillars
Config: configs/pointpillars/pointpillars_hv_secfpn_sbn-all_8xb4-amp-2x_nus-3d.py
Metadata:
Training Techniques:
- AdamW
- Mixed Precision Training
Training Resources: 8x TITAN Xp
Architecture:
- Hard Voxelization
Training Data: nuScenes
Training Memory (GB): 8.37
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 35.19
NDS: 50.27
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626-c3f0483e.pth
Code:
Version: v0.7.0
- Name: pointpillars_hv_fpn_sbn-all_8xb4-2x_nus-3d
In Collection: PointPillars
Config: configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb4-2x_nus-3d.py
Metadata:
......@@ -72,7 +94,29 @@ Models:
NDS: 53.15
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20210826_104936-fca299c1.pth
- Name: hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d
- Name: pointpillars_hv_fpn_sbn-all_8xb4-amp-2x_nus-3d
In Collection: PointPillars
Config: configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb4-amp-2x_nus-3d.py
Metadata:
Training Techniques:
- AdamW
- Mixed Precision Training
Training Resources: 8x TITAN Xp
Architecture:
- Hard Voxelization
Training Data: nuScenes
Training Memory (GB): 8.40
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 39.26
NDS: 53.26
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719-269f9dd6.pth
Code:
Version: v0.7.0
- Name: pointpillars_hv_secfpn_sbn-all_8xb2-2x_lyft-3d
In Collection: PointPillars
Config: configs/pointpillars/pointpillars_hv_secfpn_sbn-all_8xb2-2x_lyft-3d.py
Metadata:
......@@ -87,7 +131,7 @@ Models:
Public Score: 14.1
Weights: https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210829_100455-82b81c39.pth
- Name: hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d
- Name: pointpillars_hv_fpn_sbn-all_8xb2-2x_lyft-3d
In Collection: PointPillars
Config: configs/pointpillars/pointpillars_hv_fpn_sbn-all_8xb2-2x_lyft-3d.py
Metadata:
......@@ -167,47 +211,3 @@ Models:
mAPH@L1: 63.3
mAP@L2: 62.6
mAPH@L2: 57.6
- Name: hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d
In Collection: PointPillars
Config: configs/pointpillars/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py
Metadata:
Training Techniques:
- AdamW
- Mixed Precision Training
Training Resources: 8x TITAN Xp
Architecture:
- Hard Voxelization
Training Data: nuScenes
Training Memory (GB): 8.37
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 35.19
NDS: 50.27
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626-c3f0483e.pth
Code:
Version: v0.7.0
- Name: hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d
In Collection: PointPillars
Config: configs/pointpillars/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py
Metadata:
Training Techniques:
- AdamW
- Mixed Precision Training
Training Resources: 8x TITAN Xp
Architecture:
- Hard Voxelization
Training Data: nuScenes
Training Memory (GB): 8.40
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 39.26
NDS: 53.26
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719-269f9dd6.pth
Code:
Version: v0.7.0
_base_ = 'pointpillars_hv_fpn_sbn-all_8xb4-2x_nus-3d.py'
# schedule settings
optim_wrapper = dict(type='AmpOptimWrapper', loss_scale=512.)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment