Commit c2fe651f authored by zhangshilong's avatar zhangshilong Committed by ChaimZhu
Browse files

refactor directory

parent bc5806ba
...@@ -7,7 +7,7 @@ CommandLine: ...@@ -7,7 +7,7 @@ CommandLine:
import torch import torch
from mmdet3d.models.fusion_layers import PointFusion from mmdet3d.models.layers.fusion_layers import PointFusion
def test_sample_single(): def test_sample_single():
......
...@@ -7,7 +7,7 @@ CommandLine: ...@@ -7,7 +7,7 @@ CommandLine:
import torch import torch
from mmdet3d.models.fusion_layers import VoteFusion from mmdet3d.models.layers.fusion_layers import VoteFusion
def test_vote_fusion(): def test_vote_fusion():
......
...@@ -98,8 +98,8 @@ def test_chamfer_disrance(): ...@@ -98,8 +98,8 @@ def test_chamfer_disrance():
def test_paconv_regularization_loss(): def test_paconv_regularization_loss():
from mmdet3d.models.layers import PAConv, PAConvCUDA
from mmdet3d.models.losses import PAConvRegularizationLoss from mmdet3d.models.losses import PAConvRegularizationLoss
from mmdet3d.ops import PAConv, PAConvCUDA
class ToyModel(nn.Module): class ToyModel(nn.Module):
......
...@@ -3,8 +3,8 @@ from unittest import TestCase ...@@ -3,8 +3,8 @@ from unittest import TestCase
import torch import torch
from mmdet3d.core import Det3DDataSample
from mmdet3d.models.data_preprocessors import Det3DDataPreprocessor from mmdet3d.models.data_preprocessors import Det3DDataPreprocessor
from mmdet3d.structures import Det3DDataSample
class TestDet3DDataPreprocessor(TestCase): class TestDet3DDataPreprocessor(TestCase):
...@@ -33,7 +33,7 @@ class TestDet3DDataPreprocessor(TestCase): ...@@ -33,7 +33,7 @@ class TestDet3DDataPreprocessor(TestCase):
processor = Det3DDataPreprocessor(mean=[0, 0, 0], std=[1, 1, 1]) processor = Det3DDataPreprocessor(mean=[0, 0, 0], std=[1, 1, 1])
points = torch.randn((5000, 3)) points = torch.randn((5000, 3))
image = torch.randint(0, 256, (3, 11, 10)) image = torch.randint(0, 256, (3, 11, 10)).float()
inputs_dict = dict(points=points, img=image) inputs_dict = dict(points=points, img=image)
data = [{'inputs': inputs_dict, 'data_sample': Det3DDataSample()}] data = [{'inputs': inputs_dict, 'data_sample': Det3DDataSample()}]
......
# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) OpenMMLab. All rights reserved.
import numpy as np import numpy as np
from mmdet3d.core.voxel.voxel_generator import VoxelGenerator from mmdet3d.models.task_modules.voxel import VoxelGenerator
def test_voxel_generator(): def test_voxel_generator():
......
# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) OpenMMLab. All rights reserved.
import numpy as np import numpy as np
from mmdet3d.core import LiDARInstance3DBoxes
# create a dummy `results` to test the pipeline # create a dummy `results` to test the pipeline
from mmdet3d.datasets import LoadAnnotations3D, LoadPointsFromFile from mmdet3d.datasets import LoadAnnotations3D, LoadPointsFromFile
from mmdet3d.structures import LiDARInstance3DBoxes
def create_dummy_data_info(with_ann=True): def create_dummy_data_info(with_ann=True):
......
...@@ -7,8 +7,9 @@ import numpy as np ...@@ -7,8 +7,9 @@ import numpy as np
import torch import torch
from mmengine import InstanceData from mmengine import InstanceData
from mmdet3d.core import (CameraInstance3DBoxes, DepthInstance3DBoxes, from mmdet3d.structures import (CameraInstance3DBoxes, DepthInstance3DBoxes,
Det3DDataSample, LiDARInstance3DBoxes, PointData) Det3DDataSample, LiDARInstance3DBoxes,
PointData)
def _setup_seed(seed): def _setup_seed(seed):
...@@ -104,7 +105,6 @@ def _create_detector_inputs(seed=0, ...@@ -104,7 +105,6 @@ def _create_detector_inputs(seed=0,
points = torch.rand([num_points, points_feat_dim]) points = torch.rand([num_points, points_feat_dim])
else: else:
points = None points = None
if with_img: if with_img:
if isinstance(img_size, tuple): if isinstance(img_size, tuple):
img = torch.rand(3, img_size[0], img_size[1]) img = torch.rand(3, img_size[0], img_size[1])
...@@ -132,8 +132,9 @@ def _create_detector_inputs(seed=0, ...@@ -132,8 +132,9 @@ def _create_detector_inputs(seed=0,
gt_instance = InstanceData() gt_instance = InstanceData()
gt_instance.labels = torch.randint(0, num_classes, [num_gt_instance]) gt_instance.labels = torch.randint(0, num_classes, [num_gt_instance])
gt_instance.bboxes = torch.rand(num_gt_instance, 4) gt_instance.bboxes = torch.rand(num_gt_instance, 4)
gt_instance.bboxes[:, 2:] = \ gt_instance.bboxes[:,
gt_instance.bboxes[:, :2] + gt_instance.bboxes[:, 2:] 2:] = gt_instance.bboxes[:, :2] + gt_instance.bboxes[:,
2:]
data_sample.gt_instances = gt_instance data_sample.gt_instances = gt_instance
data_sample.gt_pts_seg = PointData() data_sample.gt_pts_seg = PointData()
......
...@@ -7,7 +7,7 @@ from mmcv import Config ...@@ -7,7 +7,7 @@ from mmcv import Config
from mmcv.parallel import MMDataParallel from mmcv.parallel import MMDataParallel
from mmcv.runner import load_checkpoint, wrap_fp16_model from mmcv.runner import load_checkpoint, wrap_fp16_model
from mmdet3d.datasets import build_dataloader, build_dataset from mmdet3d.datasets import build_dataset
from mmdet3d.models import build_detector from mmdet3d.models import build_detector
from tools.misc.fuse_conv_bn import fuse_module from tools.misc.fuse_conv_bn import fuse_module
...@@ -41,6 +41,11 @@ def main(): ...@@ -41,6 +41,11 @@ def main():
# build the dataloader # build the dataloader
# TODO: support multiple images per gpu (only minor changes are needed) # TODO: support multiple images per gpu (only minor changes are needed)
dataset = build_dataset(cfg.data.test) dataset = build_dataset(cfg.data.test)
# TODO fix this
def build_dataloader():
pass
data_loader = build_dataloader( data_loader = build_dataloader(
dataset, dataset,
samples_per_gpu=1, samples_per_gpu=1,
......
...@@ -9,9 +9,9 @@ from mmcv.ops import roi_align ...@@ -9,9 +9,9 @@ from mmcv.ops import roi_align
from pycocotools import mask as maskUtils from pycocotools import mask as maskUtils
from pycocotools.coco import COCO from pycocotools.coco import COCO
from mmdet3d.core.bbox import box_np_ops as box_np_ops
from mmdet3d.datasets import build_dataset from mmdet3d.datasets import build_dataset
from mmdet.core.evaluation.bbox_overlaps import bbox_overlaps from mmdet3d.structures.ops import box_np_ops as box_np_ops
from mmdet.evaluation import bbox_overlaps
def _poly2mask(mask_ann, img_h, img_w): def _poly2mask(mask_ann, img_h, img_w):
......
...@@ -6,7 +6,8 @@ import mmcv ...@@ -6,7 +6,8 @@ import mmcv
import numpy as np import numpy as np
from nuscenes.utils.geometry_utils import view_points from nuscenes.utils.geometry_utils import view_points
from mmdet3d.core.bbox import box_np_ops, points_cam2img from mmdet3d.structures import points_cam2img
from mmdet3d.structures.ops import box_np_ops
from .kitti_data_utils import WaymoInfoGatherer, get_kitti_image_info from .kitti_data_utils import WaymoInfoGatherer, get_kitti_image_info
from .nuscenes_converter import post_process_coords from .nuscenes_converter import post_process_coords
......
...@@ -11,8 +11,8 @@ from nuscenes.utils.geometry_utils import view_points ...@@ -11,8 +11,8 @@ from nuscenes.utils.geometry_utils import view_points
from pyquaternion import Quaternion from pyquaternion import Quaternion
from shapely.geometry import MultiPoint, box from shapely.geometry import MultiPoint, box
from mmdet3d.core.bbox import points_cam2img
from mmdet3d.datasets import NuScenesDataset from mmdet3d.datasets import NuScenesDataset
from mmdet3d.structures import points_cam2img
nus_categories = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle', nus_categories = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
......
...@@ -16,9 +16,9 @@ import mmcv ...@@ -16,9 +16,9 @@ import mmcv
import numpy as np import numpy as np
from nuscenes.nuscenes import NuScenes from nuscenes.nuscenes import NuScenes
from mmdet3d.core.bbox import points_cam2img
from mmdet3d.datasets.convert_utils import get_2d_boxes from mmdet3d.datasets.convert_utils import get_2d_boxes
from mmdet3d.datasets.utils import convert_quaternion_to_matrix from mmdet3d.datasets.utils import convert_quaternion_to_matrix
from mmdet3d.structures import points_cam2img
def get_empty_instance(): def get_empty_instance():
......
...@@ -7,7 +7,7 @@ import torch ...@@ -7,7 +7,7 @@ import torch
from ts.torch_handler.base_handler import BaseHandler from ts.torch_handler.base_handler import BaseHandler
from mmdet3d.apis import inference_detector, init_model from mmdet3d.apis import inference_detector, init_model
from mmdet3d.core.points import get_points_type from mmdet3d.structures.points import get_points_type
class MMdet3dHandler(BaseHandler): class MMdet3dHandler(BaseHandler):
......
...@@ -12,7 +12,7 @@ def fuse_conv_bn(conv, bn): ...@@ -12,7 +12,7 @@ def fuse_conv_bn(conv, bn):
"""During inference, the functionary of batch norm layers is turned off but """During inference, the functionary of batch norm layers is turned off but
only the mean and var alone channels are used, which exposes the chance to only the mean and var alone channels are used, which exposes the chance to
fuse it with the preceding conv layers to save computations and simplify fuse it with the preceding conv layers to save computations and simplify
network structures.""" network bboxes_3d."""
conv_w = conv.weight conv_w = conv.weight
conv_b = conv.bias if conv.bias is not None else torch.zeros_like( conv_b = conv.bias if conv.bias is not None else torch.zeros_like(
bn.running_mean) bn.running_mean)
......
...@@ -5,7 +5,7 @@ from os import path as osp ...@@ -5,7 +5,7 @@ from os import path as osp
import mmcv import mmcv
import numpy as np import numpy as np
from mmdet3d.core.bbox import limit_period from mmdet3d.structures import limit_period
def update_sunrgbd_infos(root_dir, out_dir, pkl_files): def update_sunrgbd_infos(root_dir, out_dir, pkl_files):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment