Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
mmdetection3d
Commits
c04831c5
Unverified
Commit
c04831c5
authored
Aug 01, 2023
by
Xiang Xu
Committed by
GitHub
Aug 01, 2023
Browse files
[Fix] Update new config type (#2655)
* update new config * fix bug
parent
5638af7d
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
42 additions
and
30 deletions
+42
-30
mmdet3d/configs/centerpoint/centerpoint_pillar02_second_secfpn_8xb4_cyclic_20e_nus_3d.py
...terpoint_pillar02_second_secfpn_8xb4_cyclic_20e_nus_3d.py
+8
-6
mmdet3d/configs/centerpoint/centerpoint_voxel01_second_secfpn_8xb4_cyclic_20e_nus_3d.py
...nterpoint_voxel01_second_secfpn_8xb4_cyclic_20e_nus_3d.py
+8
-6
mmdet3d/configs/minkunet/minkunet34_w32_torchsparse_8xb2_laser_polar_mix_3x_semantickitti.py
..._w32_torchsparse_8xb2_laser_polar_mix_3x_semantickitti.py
+6
-4
mmdet3d/configs/mvxnet/mvxnet_fpn_dv_second_secfpn_8xb2_80e_kitti_3d_3class.py
...t/mvxnet_fpn_dv_second_secfpn_8xb2_80e_kitti_3d_3class.py
+4
-2
mmdet3d/configs/pgd/pgd_r101_caffe_fpn_head_gn_4xb3_4x_kitti_mono3d.py
...gs/pgd/pgd_r101_caffe_fpn_head_gn_4xb3_4x_kitti_mono3d.py
+10
-8
mmdet3d/configs/votenet/votenet_8xb8_scannet_3d.py
mmdet3d/configs/votenet/votenet_8xb8_scannet_3d.py
+6
-4
No files found.
mmdet3d/configs/centerpoint/centerpoint_pillar02_second_secfpn_8xb4_cyclic_20e_nus_3d.py
View file @
c04831c5
# Copyright (c) OpenMMLab. All rights reserved.
if
'_base_'
:
from
mmengine.config
import
read_base
with
read_base
():
from
.._base_.datasets.nus_3d
import
*
from
.._base_.models.centerpoint_pillar02_second_secfpn_nus
import
*
from
.._base_.schedules.cyclic_20e
import
*
...
...
@@ -29,9 +31,9 @@ class_names = [
'car'
,
'truck'
,
'construction_vehicle'
,
'bus'
,
'trailer'
,
'barrier'
,
'motorcycle'
,
'bicycle'
,
'pedestrian'
,
'traffic_cone'
]
data_prefix
.
merg
e
(
data_prefix
.
updat
e
(
dict
(
pts
=
'samples/LIDAR_TOP'
,
img
=
''
,
sweeps
=
'sweeps/LIDAR_TOP'
))
model
.
merg
e
(
model
.
updat
e
(
dict
(
data_preprocessor
=
dict
(
voxel_layer
=
dict
(
point_cloud_range
=
point_cloud_range
)),
...
...
@@ -167,13 +169,13 @@ train_dataloader.merge(
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d
=
'LiDAR'
,
backend_args
=
backend_args
))))
test_dataloader
.
merg
e
(
test_dataloader
.
updat
e
(
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
,
metainfo
=
dict
(
classes
=
class_names
))))
val_dataloader
.
merg
e
(
val_dataloader
.
updat
e
(
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
,
metainfo
=
dict
(
classes
=
class_names
))))
train_cfg
.
merg
e
(
dict
(
val_interval
=
20
))
train_cfg
.
updat
e
(
dict
(
val_interval
=
20
))
mmdet3d/configs/centerpoint/centerpoint_voxel01_second_secfpn_8xb4_cyclic_20e_nus_3d.py
View file @
c04831c5
# Copyright (c) OpenMMLab. All rights reserved.
if
'_base_'
:
from
mmengine
import
read_base
with
read_base
():
from
.._base_.datasets.nus_3d
import
*
from
.._base_.models.centerpoint_voxel01_second_secfpn_nus
import
*
from
.._base_.schedules.cyclic_20e
import
*
...
...
@@ -29,9 +31,9 @@ class_names = [
'car'
,
'truck'
,
'construction_vehicle'
,
'bus'
,
'trailer'
,
'barrier'
,
'motorcycle'
,
'bicycle'
,
'pedestrian'
,
'traffic_cone'
]
data_prefix
.
merg
e
(
data_prefix
.
updat
e
(
dict
(
pts
=
'samples/LIDAR_TOP'
,
img
=
''
,
sweeps
=
'sweeps/LIDAR_TOP'
))
model
.
merg
e
(
model
.
updat
e
(
dict
(
data_preprocessor
=
dict
(
voxel_layer
=
dict
(
point_cloud_range
=
point_cloud_range
)),
...
...
@@ -167,13 +169,13 @@ train_dataloader.merge(
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d
=
'LiDAR'
,
backend_args
=
backend_args
))))
test_dataloader
.
merg
e
(
test_dataloader
.
updat
e
(
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
,
metainfo
=
dict
(
classes
=
class_names
))))
val_dataloader
.
merg
e
(
val_dataloader
.
updat
e
(
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
,
metainfo
=
dict
(
classes
=
class_names
))))
train_cfg
.
merg
e
(
dict
(
val_interval
=
20
))
train_cfg
.
updat
e
(
dict
(
val_interval
=
20
))
mmdet3d/configs/minkunet/minkunet34_w32_torchsparse_8xb2_laser_polar_mix_3x_semantickitti.py
View file @
c04831c5
# Copyright (c) OpenMMLab. All rights reserved.
if
'_base_'
:
from
mmengine
import
read_base
with
read_base
():
from
.._base_.datasets.semantickitti
import
*
from
.._base_.models.minkunet
import
*
from
.._base_.schedules.schedule_3x
import
*
...
...
@@ -15,7 +17,7 @@ from mmdet3d.datasets.transforms.loading import (LoadAnnotations3D,
from
mmdet3d.datasets.transforms.transforms_3d
import
(
GlobalRotScaleTrans
,
LaserMix
,
PolarMix
)
model
.
merg
e
(
model
.
updat
e
(
dict
(
data_preprocessor
=
dict
(
max_voxels
=
None
),
backbone
=
dict
(
encoder_blocks
=
[
2
,
3
,
4
,
6
])))
...
...
@@ -92,6 +94,6 @@ train_pipeline = [
dict
(
type
=
Pack3DDetInputs
,
keys
=
[
'points'
,
'pts_semantic_mask'
])
]
train_dataloader
.
merg
e
(
dict
(
dataset
=
dict
(
pipeline
=
train_pipeline
)))
train_dataloader
.
updat
e
(
dict
(
dataset
=
dict
(
pipeline
=
train_pipeline
)))
default_hooks
.
merg
e
(
dict
(
checkpoint
=
dict
(
type
=
CheckpointHook
,
interval
=
1
)))
default_hooks
.
updat
e
(
dict
(
checkpoint
=
dict
(
type
=
CheckpointHook
,
interval
=
1
)))
mmdet3d/configs/mvxnet/mvxnet_fpn_dv_second_secfpn_8xb2_80e_kitti_3d_3class.py
View file @
c04831c5
# Copyright (c) OpenMMLab. All rights reserved.
if
'_base_'
:
from
mmengine
import
read_base
with
read_base
():
from
.._base_.schedules.cosine
import
*
from
.._base_.default_runtime
import
*
...
...
@@ -293,7 +295,7 @@ test_dataloader = dict(
box_type_3d
=
'LiDAR'
,
backend_args
=
backend_args
))
optim_wrapper
.
merg
e
(
optim_wrapper
.
updat
e
(
dict
(
optimizer
=
dict
(
weight_decay
=
0.01
),
clip_grad
=
dict
(
max_norm
=
35
,
norm_type
=
2
),
...
...
mmdet3d/configs/pgd/pgd_r101_caffe_fpn_head_gn_4xb3_4x_kitti_mono3d.py
View file @
c04831c5
# Copyright (c) OpenMMLab. All rights reserved.
if
'_base_'
:
from
mmengine
import
read_base
with
read_base
():
from
.._base_.datasets.kitti_mono3d
import
*
from
.._base_.models.pgd
import
*
from
.._base_.schedules.mmdet_schedule_1x
import
*
...
...
@@ -19,7 +21,7 @@ from mmdet3d.models.losses.uncertain_smooth_l1_loss import \
from
mmdet3d.models.task_modules.coders.pgd_bbox_coder
import
PGDBBoxCoder
# model settings
model
.
merg
e
(
model
.
updat
e
(
dict
(
data_preprocessor
=
dict
(
type
=
Det3DDataPreprocessor
,
...
...
@@ -121,13 +123,13 @@ test_pipeline = [
dict
(
type
=
Pack3DDetInputs
,
keys
=
[
'img'
])
]
train_dataloader
.
merg
e
(
train_dataloader
.
updat
e
(
dict
(
batch_size
=
3
,
num_workers
=
3
,
dataset
=
dict
(
pipeline
=
train_pipeline
)))
test_dataloader
.
merg
e
(
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
)))
val_dataloader
.
merg
e
(
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
)))
test_dataloader
.
updat
e
(
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
)))
val_dataloader
.
updat
e
(
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
)))
# optimizer
optim_wrapper
.
merg
e
(
optim_wrapper
.
updat
e
(
dict
(
optimizer
=
dict
(
lr
=
0.001
),
paramwise_cfg
=
dict
(
bias_lr_mult
=
2.
,
bias_decay_mult
=
0.
),
...
...
@@ -146,5 +148,5 @@ param_scheduler = [
gamma
=
0.1
)
]
train_cfg
.
merg
e
(
dict
(
max_epochs
=
48
,
val_interval
=
2
))
auto_scale_lr
.
merg
e
(
dict
(
base_batch_size
=
12
))
train_cfg
.
updat
e
(
dict
(
max_epochs
=
48
,
val_interval
=
2
))
auto_scale_lr
.
updat
e
(
dict
(
base_batch_size
=
12
))
mmdet3d/configs/votenet/votenet_8xb8_scannet_3d.py
View file @
c04831c5
# Copyright (c) OpenMMLab. All rights reserved.
if
'_base_'
:
from
mmengine
import
read_base
with
read_base
():
from
.._base_.datasets.scannet_3d
import
*
from
.._base_.models.votenet
import
*
from
.._base_.schedules.schedule_3x
import
*
...
...
@@ -11,7 +13,7 @@ from mmdet3d.models.task_modules.coders.partial_bin_based_bbox_coder import \
PartialBinBasedBBoxCoder
# model settings
model
.
merg
e
(
model
.
updat
e
(
dict
(
bbox_head
=
dict
(
num_classes
=
18
,
...
...
@@ -39,9 +41,9 @@ model.merge(
[
1.1511526
,
1.0546296
,
0.49706793
],
[
0.47535285
,
0.49249494
,
0.5802117
]]))))
default_hooks
.
merg
e
(
dict
(
logger
=
dict
(
type
=
LoggerHook
,
interval
=
30
)))
default_hooks
.
updat
e
(
dict
(
logger
=
dict
(
type
=
LoggerHook
,
interval
=
30
)))
# Default setting for scaling LR automatically
# - `enable` means enable scaling LR automatically
# or not by default.
# - `base_batch_size` = (8 GPUs) x (8 samples per GPU).
auto_scale_lr
.
merg
e
(
dict
(
enable
=
False
,
base_batch_size
=
64
))
auto_scale_lr
.
updat
e
(
dict
(
enable
=
False
,
base_batch_size
=
64
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment