"vscode:/vscode.git/clone" did not exist on "e63e0473248c57a403b6f1e080f4f57b7f0ead15"
Unverified Commit bb204696 authored by Wenwei Zhang's avatar Wenwei Zhang Committed by GitHub
Browse files

Release v1.0.0rc3

Release v1.0.0rc3
parents 14c5ded4 dea954e5
...@@ -22,9 +22,9 @@ Results for SUN RGB-D, ScanNet and nuScenes are currently available in ImVoxelNe ...@@ -22,9 +22,9 @@ Results for SUN RGB-D, ScanNet and nuScenes are currently available in ImVoxelNe
### KITTI ### KITTI
| Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | | Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :---------: | :-----: |:-----: | :------: | :------------: | :----: |:----: | | :---------------------------------------: | :---: | :-----: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [ResNet-50](./imvoxelnet_kitti-3d-car.py) | Car | 3x | | |17.26|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/imvoxelnet/imvoxelnet_4x8_kitti-3d-car/imvoxelnet_4x8_kitti-3d-car_20210830_003014-3d0ffdf4.pth) | [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/imvoxelnet/imvoxelnet_4x8_kitti-3d-car/imvoxelnet_4x8_kitti-3d-car_20210830_003014.log.json)| | [ResNet-50](./imvoxelnet_kitti-3d-car.py) | Car | 3x | | | 17.26 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/imvoxelnet/imvoxelnet_4x8_kitti-3d-car/imvoxelnet_4x8_kitti-3d-car_20210830_003014-3d0ffdf4.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/imvoxelnet/imvoxelnet_4x8_kitti-3d-car/imvoxelnet_4x8_kitti-3d-car_20210830_003014.log.json) |
## Citation ## Citation
......
...@@ -20,17 +20,17 @@ We implement MonoFlex and provide the results and checkpoints on KITTI dataset. ...@@ -20,17 +20,17 @@ We implement MonoFlex and provide the results and checkpoints on KITTI dataset.
### KITTI ### KITTI
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :---------: | :-----: | :------: | :------------: | :----: | :------: | | :---------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|[DLA34](./monoflex_dla34_pytorch_dlaneck_gn-all_2x4_6x_kitti-mono3d.py)|6x|9.64||21.86|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/monoflex/monoflex_dla34_pytorch_dlaneck_gn-all_2x4_6x_kitti-mono3d_20211228_027553-d46d9bb0.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/monoflex/monoflex_dla34_pytorch_dlaneck_gn-all_2x4_6x_kitti-mono3d_20211228_027553.log.json) | [DLA34](./monoflex_dla34_pytorch_dlaneck_gn-all_2x4_6x_kitti-mono3d.py) | 6x | 9.64 | | 21.86 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/monoflex/monoflex_dla34_pytorch_dlaneck_gn-all_2x4_6x_kitti-mono3d_20211228_027553-d46d9bb0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/monoflex/monoflex_dla34_pytorch_dlaneck_gn-all_2x4_6x_kitti-mono3d_20211228_027553.log.json) |
Note: mAP represents Car moderate 3D strict AP11 results. Note: mAP represents Car moderate 3D strict AP11 results.
Detailed performance on KITTI 3D detection (3D/BEV) is as follows, evaluated by AP11 and AP40 metric: Detailed performance on KITTI 3D detection (3D/BEV) is as follows, evaluated by AP11 and AP40 metric:
| | Easy | Moderate | Hard | | | Easy | Moderate | Hard |
|-------------|:-------------:|:--------------:|:-------------:| | ---------- | :-----------: | :-----------: | :-----------: |
| Car (AP11) | 28.02 / 36.11 | 21.86 / 29.46 | 19.01 / 24.83 | | Car (AP11) | 28.02 / 36.11 | 21.86 / 29.46 | 19.01 / 24.83 |
| Car (AP40) | 23.22 / 32.74 | 17.18 / 24.02 | 15.13 / 20.67 | | Car (AP40) | 23.22 / 32.74 | 17.18 / 24.02 | 15.13 / 20.67 |
Note: mAP represents Car moderate 3D strict AP11 / AP40 results. Because of the limited data for pedestrians and cyclists, the detection performance for these two classes is usually unstable. Therefore, we only list car detection results here. In addition, the AP11 result may fluctuate in a larger range (~1 AP), so AP40 is a more recommended metric for reference due to its much better stability. Note: mAP represents Car moderate 3D strict AP11 / AP40 results. Because of the limited data for pedestrians and cyclists, the detection performance for these two classes is usually unstable. Therefore, we only list car detection results here. In addition, the AP11 result may fluctuate in a larger range (~1 AP), so AP40 is a more recommended metric for reference due to its much better stability.
......
...@@ -20,9 +20,9 @@ We implement MVX-Net and provide its results and models on KITTI dataset. ...@@ -20,9 +20,9 @@ We implement MVX-Net and provide its results and models on KITTI dataset.
### KITTI ### KITTI
| Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | | Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :-------------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py)|3 Class|cosine 80e|6.7||63.22|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805-83442923.pth) | [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805.log.json)| | [SECFPN](./dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py) | 3 Class | cosine 80e | 6.7 | | 63.22 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805-83442923.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20210831_060805.log.json) |
## Citation ## Citation
......
...@@ -31,28 +31,29 @@ python -u tools/data_converter/nuimage_converter.py --data-root ${DATA_ROOT} --v ...@@ -31,28 +31,29 @@ python -u tools/data_converter/nuimage_converter.py --data-root ${DATA_ROOT} --v
We report Mask R-CNN and Cascade Mask R-CNN results on nuimages. We report Mask R-CNN and Cascade Mask R-CNN results on nuimages.
|Method | Backbone|Pretraining | Lr schd | Mem (GB) | Box AP | Mask AP |Download | | Method | Backbone | Pretraining | Lr schd | Mem (GB) | Box AP | Mask AP | Download |
| :---------: |:---------: | :---------: | :-----: |:-----: | :------: | :------------: | :----: | | :----------------: | :-----------------------------------------------------------------------------------: | :---------: | :-----: | :------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| Mask R-CNN| [R-50](./mask_rcnn_r50_fpn_1x_nuim.py) |IN|1x|7.4|47.8 |38.4|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_1x_nuim/mask_rcnn_r50_fpn_1x_nuim_20201008_195238-e99f5182.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_1x_nuim/mask_rcnn_r50_fpn_1x_nuim_20201008_195238.log.json)| | Mask R-CNN | [R-50](./mask_rcnn_r50_fpn_1x_nuim.py) | IN | 1x | 7.4 | 47.8 | 38.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_1x_nuim/mask_rcnn_r50_fpn_1x_nuim_20201008_195238-e99f5182.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_1x_nuim/mask_rcnn_r50_fpn_1x_nuim_20201008_195238.log.json) |
| Mask R-CNN| [R-50](./mask_rcnn_r50_fpn_coco-2x_1x_nuim.py) |IN+COCO-2x|1x|7.4|49.7|40.5|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20201008_195238-b1742a60.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20201008_195238.log.json)| | Mask R-CNN | [R-50](./mask_rcnn_r50_fpn_coco-2x_1x_nuim.py) | IN+COCO-2x | 1x | 7.4 | 49.7 | 40.5 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20201008_195238-b1742a60.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_fpn_coco-2x_1x_nuim/mask_rcnn_r50_fpn_coco-2x_1x_nuim_20201008_195238.log.json) |
| Mask R-CNN| [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_1x_nuim.py) |IN|1x|7.0|47.7|38.2|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_1x_nuim/) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_1x_nuim/)| | Mask R-CNN | [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_1x_nuim.py) | IN | 1x | 7.0 | 47.7 | 38.2 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_1x_nuim/) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_1x_nuim/) |
| Mask R-CNN| [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim.py) |IN+COCO-3x|1x|7.0|49.9|40.8|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim_20201008_195305-661a992e.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim_20201008_195305.log.json)| | Mask R-CNN | [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim.py) | IN+COCO-3x | 1x | 7.0 | 49.9 | 40.8 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim_20201008_195305-661a992e.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_1x_nuim_20201008_195305.log.json) |
| Mask R-CNN| [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim.py) |IN+COCO-3x|20e|7.0|50.6|41.3|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim_20201009_125002-5529442c.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim_20201009_125002.log.json)| | Mask R-CNN | [R-50-CAFFE](./mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim.py) | IN+COCO-3x | 20e | 7.0 | 50.6 | 41.3 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim_20201009_125002-5529442c.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim/mask_rcnn_r50_caffe_fpn_coco-3x_20e_nuim_20201009_125002.log.json) |
| Mask R-CNN| [R-101](./mask_rcnn_r101_fpn_1x_nuim.py) |IN|1x|10.9|48.9|39.1|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r101_fpn_1x_nuim/mask_rcnn_r101_fpn_1x_nuim_20201024_134803-65c7623a.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r101_fpn_1x_nuim/mask_rcnn_r101_fpn_1x_nuim_20201024_134803.log.json)| | Mask R-CNN | [R-101](./mask_rcnn_r101_fpn_1x_nuim.py) | IN | 1x | 10.9 | 48.9 | 39.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r101_fpn_1x_nuim/mask_rcnn_r101_fpn_1x_nuim_20201024_134803-65c7623a.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_r101_fpn_1x_nuim/mask_rcnn_r101_fpn_1x_nuim_20201024_134803.log.json) |
| Mask R-CNN| [X-101_32x4d](./mask_rcnn_x101_32x4d_fpn_1x_nuim.py) |IN|1x|13.3|50.4|40.5|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_x101_32x4d_fpn_1x_nuim/mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135741-b699ab37.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_x101_32x4d_fpn_1x_nuim/mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135741.log.json)| | Mask R-CNN | [X-101_32x4d](./mask_rcnn_x101_32x4d_fpn_1x_nuim.py) | IN | 1x | 13.3 | 50.4 | 40.5 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_x101_32x4d_fpn_1x_nuim/mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135741-b699ab37.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/mask_rcnn_x101_32x4d_fpn_1x_nuim/mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135741.log.json) |
| Cascade Mask R-CNN| [R-50](./cascade_mask_rcnn_r50_fpn_1x_nuim.py) |IN|1x|8.9|50.8|40.4|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_1x_nuim/cascade_mask_rcnn_r50_fpn_1x_nuim_20201008_195342-1147c036.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_1x_nuim/cascade_mask_rcnn_r50_fpn_1x_nuim_20201008_195342.log.json)| | Cascade Mask R-CNN | [R-50](./cascade_mask_rcnn_r50_fpn_1x_nuim.py) | IN | 1x | 8.9 | 50.8 | 40.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_1x_nuim/cascade_mask_rcnn_r50_fpn_1x_nuim_20201008_195342-1147c036.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_1x_nuim/cascade_mask_rcnn_r50_fpn_1x_nuim_20201008_195342.log.json) |
| Cascade Mask R-CNN| [R-50](./cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim.py) |IN+COCO-20e|1x|8.9|52.8|42.2|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim_20201009_124158-ad0540e3.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim_20201009_124158.log.json)| | Cascade Mask R-CNN | [R-50](./cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim.py) | IN+COCO-20e | 1x | 8.9 | 52.8 | 42.2 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim_20201009_124158-ad0540e3.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_1x_nuim_20201009_124158.log.json) |
| Cascade Mask R-CNN| [R-50](./cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim.py) |IN+COCO-20e|20e|8.9|52.8|42.2|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim_20201009_124951-40963960.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim_20201009_124951.log.json)| | Cascade Mask R-CNN | [R-50](./cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim.py) | IN+COCO-20e | 20e | 8.9 | 52.8 | 42.2 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim_20201009_124951-40963960.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim/cascade_mask_rcnn_r50_fpn_coco-20e_20e_nuim_20201009_124951.log.json) |
| Cascade Mask R-CNN| [R-101](./cascade_mask_rcnn_r101_fpn_1x_nuim.py) |IN|1x|12.5|51.5|40.7|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r101_fpn_1x_nuim/cascade_mask_rcnn_r101_fpn_1x_nuim_20201024_134804-45215b1e.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r101_fpn_1x_nuim/cascade_mask_rcnn_r101_fpn_1x_nuim_20201024_134804.log.json)| | Cascade Mask R-CNN | [R-101](./cascade_mask_rcnn_r101_fpn_1x_nuim.py) | IN | 1x | 12.5 | 51.5 | 40.7 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r101_fpn_1x_nuim/cascade_mask_rcnn_r101_fpn_1x_nuim_20201024_134804-45215b1e.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_r101_fpn_1x_nuim/cascade_mask_rcnn_r101_fpn_1x_nuim_20201024_134804.log.json) |
| Cascade Mask R-CNN| [X-101_32x4d](./cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim.py) |IN|1x|14.9|52.8|41.6|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135753-e0e49778.pth) | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135753.log.json)| | Cascade Mask R-CNN | [X-101_32x4d](./cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim.py) | IN | 1x | 14.9 | 52.8 | 41.6 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135753-e0e49778.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim/cascade_mask_rcnn_x101_32x4d_fpn_1x_nuim_20201024_135753.log.json) |
| HTC w/o semantic|[R-50](./htc_without_semantic_r50_fpn_1x_nuim.py) |IN|1x||[model]() &#124; [log]()| | HTC w/o semantic | [R-50](./htc_without_semantic_r50_fpn_1x_nuim.py) | IN | 1x | | [model](<>) \| [log](<>) | | |
| HTC|[R-50](./htc_r50_fpn_1x_nuim.py) |IN|1x||[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/)| | HTC | [R-50](./htc_r50_fpn_1x_nuim.py) | IN | 1x | | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/) | | |
| HTC|[R-50](./htc_r50_fpn_coco-20e_1x_nuim.py) |IN+COCO-20e|1x|11.6|53.8|43.8|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_1x_nuim/htc_r50_fpn_coco-20e_1x_nuim_20201010_070203-0b53a65e.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_1x_nuim/htc_r50_fpn_coco-20e_1x_nuim_20201010_070203.log.json)| | HTC | [R-50](./htc_r50_fpn_coco-20e_1x_nuim.py) | IN+COCO-20e | 1x | 11.6 | 53.8 | 43.8 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_1x_nuim/htc_r50_fpn_coco-20e_1x_nuim_20201010_070203-0b53a65e.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_1x_nuim/htc_r50_fpn_coco-20e_1x_nuim_20201010_070203.log.json) |
| HTC|[R-50](./htc_r50_fpn_coco-20e_20e_nuim.py) |IN+COCO-20e|20e|11.6|54.8|44.4|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_20e_nuim/htc_r50_fpn_coco-20e_20e_nuim_20201008_211415-d6c60a2c.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_20e_nuim/htc_r50_fpn_coco-20e_20e_nuim_20201008_211415.log.json)| | HTC | [R-50](./htc_r50_fpn_coco-20e_20e_nuim.py) | IN+COCO-20e | 20e | 11.6 | 54.8 | 44.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_20e_nuim/htc_r50_fpn_coco-20e_20e_nuim_20201008_211415-d6c60a2c.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_r50_fpn_coco-20e_20e_nuim/htc_r50_fpn_coco-20e_20e_nuim_20201008_211415.log.json) |
| HTC|[X-101_64x4d + DCN_c3-c5](./htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim.py) |IN+COCO-20e|20e|13.3|57.3|46.4|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim_20201008_211222-0b16ac4b.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim_20201008_211222.log.json)| | HTC | [X-101_64x4d + DCN_c3-c5](./htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim.py) | IN+COCO-20e | 20e | 13.3 | 57.3 | 46.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim_20201008_211222-0b16ac4b.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/nuimages_semseg/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim/htc_x101_64x4d_fpn_dconv_c3-c5_coco-20e_16x1_20e_nuim_20201008_211222.log.json) |
**Note**: **Note**:
1. `IN` means only using ImageNet pre-trained backbone. `IN+COCO-Nx` and `IN+COCO-Ne` means the backbone is first pre-trained on ImageNet, and then the detector is pre-trained on COCO train2017 dataset by `Nx` and `N` epochs schedules, respectively. 1. `IN` means only using ImageNet pre-trained backbone. `IN+COCO-Nx` and `IN+COCO-Ne` means the backbone is first pre-trained on ImageNet, and then the detector is pre-trained on COCO train2017 dataset by `Nx` and `N` epochs schedules, respectively.
2. All the training hyper-parameters follow the standard schedules on COCO dataset except that the images are resized from 2. All the training hyper-parameters follow the standard schedules on COCO dataset except that the images are resized from
1280 x 720 to 1920 x 1080 (relative ratio 0.8 to 1.2) since the images are in size 1600 x 900. 1280 x 720 to 1920 x 1080 (relative ratio 0.8 to 1.2) since the images are in size 1600 x 900.
3. The class order in the detectors released in v0.6.0 is different from the order in the configs because the bug in the conversion script. This bug has been fixed since v0.7.0 and the models trained by the correct class order are also released. If you used nuImages since v0.6.0, please re-convert the data through the conversion script using the above-mentioned command. 3. The class order in the detectors released in v0.6.0 is different from the order in the configs because the bug in the conversion script. This bug has been fixed since v0.7.0 and the models trained by the correct class order are also released. If you used nuImages since v0.6.0, please re-convert the data through the conversion script using the above-mentioned command.
...@@ -23,10 +23,10 @@ We implement PAConv and provide the result and checkpoints on S3DIS dataset. ...@@ -23,10 +23,10 @@ We implement PAConv and provide the result and checkpoints on S3DIS dataset.
### S3DIS ### S3DIS
| Method | Split | Lr schd | Mem (GB) | Inf time (fps) | mIoU (Val set) | Download | | Method | Split | Lr schd | Mem (GB) | Inf time (fps) | mIoU (Val set) | Download |
| :-------------------------------------------------------------------------: | :----: | :---------: | :------: | :------------: | :------------: | :----------------------: | | :-------------------------------------------------------------------------: | :----: | :---------: | :------: | :------------: | :------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [PAConv (SSG)](./paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class.py) | Area_5 | cosine 150e | 5.8 | | 66.65 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class_20210729_200615-2147b2d1.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class_20210729_200615.log.json) | | [PAConv (SSG)](./paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class.py) | Area_5 | cosine 150e | 5.8 | | 66.65 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class_20210729_200615-2147b2d1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class/paconv_ssg_8x8_cosine_150e_s3dis_seg-3d-13class_20210729_200615.log.json) |
| [PAConv\* (SSG)](./paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class.py) | Area_5 | cosine 200e | 3.8 | | 65.33 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class_20210802_171802-e5ea9bb9.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class_20210802_171802.log.json) | | [PAConv\* (SSG)](./paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class.py) | Area_5 | cosine 200e | 3.8 | | 65.33 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class_20210802_171802-e5ea9bb9.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/paconv/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class/paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class_20210802_171802.log.json) |
**Notes:** **Notes:**
......
...@@ -20,10 +20,10 @@ We implement Part-A^2 and provide its results and checkpoints on KITTI dataset. ...@@ -20,10 +20,10 @@ We implement Part-A^2 and provide its results and checkpoints on KITTI dataset.
### KITTI ### KITTI
| Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | | Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :---------: | :-----: |:-----: | :------: | :------------: | :----: |:----: | | :------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py) |3 Class|cyclic 80e|4.1||68.33|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017.log.json)| | [SECFPN](./hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 4.1 | | 68.33 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017-454a5344.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20210831_022017.log.json) |
| [SECFPN](./hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py) |Car |cyclic 80e|4.0||79.08|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017-cb7ff621.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017.log.json)| | [SECFPN](./hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py) | Car | cyclic 80e | 4.0 | | 79.08 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017-cb7ff621.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20210831_022017.log.json) |
## Citation ## Citation
......
...@@ -90,6 +90,7 @@ data = dict( ...@@ -90,6 +90,7 @@ data = dict(
pipeline=train_pipeline, pipeline=train_pipeline,
modality=input_modality, modality=input_modality,
classes=class_names, classes=class_names,
box_type_3d='LiDAR',
test_mode=False)), test_mode=False)),
val=dict( val=dict(
type=dataset_type, type=dataset_type,
...@@ -100,6 +101,7 @@ data = dict( ...@@ -100,6 +101,7 @@ data = dict(
pipeline=test_pipeline, pipeline=test_pipeline,
modality=input_modality, modality=input_modality,
classes=class_names, classes=class_names,
box_type_3d='LiDAR',
test_mode=True), test_mode=True),
test=dict( test=dict(
type=dataset_type, type=dataset_type,
...@@ -110,6 +112,7 @@ data = dict( ...@@ -110,6 +112,7 @@ data = dict(
pipeline=test_pipeline, pipeline=test_pipeline,
modality=input_modality, modality=input_modality,
classes=class_names, classes=class_names,
box_type_3d='LiDAR',
test_mode=True)) test_mode=True))
# Part-A2 uses a different learning rate from what SECOND uses. # Part-A2 uses a different learning rate from what SECOND uses.
......
...@@ -26,29 +26,29 @@ A more extensive study based on FCOS3D and PGD is on-going. Please stay tuned. ...@@ -26,29 +26,29 @@ A more extensive study based on FCOS3D and PGD is on-going. Please stay tuned.
### KITTI ### KITTI
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP_11 / mAP_40 | Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP_11 / mAP_40 | Download |
| :---------: | :-----: | :------: | :------------: | :----: | :------: | | :--------------------------------------------------------------: | :-----: | :------: | :------------: | :-------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|[ResNet101](./pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d.py)|4x|9.07||18.33 / 13.23|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d_20211022_102608-8a97533b.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d_20211022_102608.log.json)| | [ResNet101](./pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d.py) | 4x | 9.07 | | 18.33 / 13.23 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d_20211022_102608-8a97533b.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d_20211022_102608.log.json) |
Detailed performance on KITTI 3D detection (3D/BEV) is as follows, evaluated by AP11 and AP40 metric: Detailed performance on KITTI 3D detection (3D/BEV) is as follows, evaluated by AP11 and AP40 metric:
| | Easy | Moderate | Hard | | | Easy | Moderate | Hard |
|-------------|:-------------:|:--------------:|:-------------:| | ---------- | :-----------: | :-----------: | :-----------: |
| Car (AP11) | 24.09 / 30.11 | 18.33 / 23.46 | 16.90 / 19.33 | | Car (AP11) | 24.09 / 30.11 | 18.33 / 23.46 | 16.90 / 19.33 |
| Car (AP40) | 19.27 / 26.60 | 13.23 / 18.23 | 10.65 / 15.00 | | Car (AP40) | 19.27 / 26.60 | 13.23 / 18.23 | 10.65 / 15.00 |
Note: mAP represents Car moderate 3D strict AP11 / AP40 results. Because of the limited data for pedestrians and cyclists, the detection performance for these two classes is usually unstable. Therefore, we only list car detection results here. In addition, AP40 is a more recommended metric for reference due to its much better stability. Note: mAP represents Car moderate 3D strict AP11 / AP40 results. Because of the limited data for pedestrians and cyclists, the detection performance for these two classes is usually unstable. Therefore, we only list car detection results here. In addition, AP40 is a more recommended metric for reference due to its much better stability.
### NuScenes ### NuScenes
| Backbone | Lr schd | Mem (GB) | mAP | NDS | Download | | Backbone | Lr schd | Mem (GB) | mAP | NDS | Download |
| :---------: | :-----: | :------: | :----: |:----: | :------: | | :------------------------------------------------------------------------------: | :-----: | :------: | :--: | :--: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|[ResNet101 w/ DCN](./pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d.py)|1x|9.20|31.7|39.3|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_20211116_195350-f4b5eec2.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_20211116_195350.log.json)| | [ResNet101 w/ DCN](./pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d.py) | 1x | 9.20 | 31.7 | 39.3 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_20211116_195350-f4b5eec2.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_20211116_195350.log.json) |
|[above w/ finetune](./pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune.py)|1x|9.20|34.6|41.1|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune_20211118_093245-fd419681.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune_20211118_093245.log.json)| | [above w/ finetune](./pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune.py) | 1x | 9.20 | 34.6 | 41.1 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune_20211118_093245-fd419681.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_1x_nus-mono3d_finetune_20211118_093245.log.json) |
|above w/ tta|1x|9.20|35.5|41.8|| | above w/ tta | 1x | 9.20 | 35.5 | 41.8 | |
|[ResNet101 w/ DCN](./pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d.py)|2x|9.20|33.6|40.9|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_20211112_125314-cb677266.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_20211112_125314.log.json)| | [ResNet101 w/ DCN](./pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d.py) | 2x | 9.20 | 33.6 | 40.9 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_20211112_125314-cb677266.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_20211112_125314.log.json) |
|[above w/ finetune](./pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune.py)|2x|9.20|35.8|42.5|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune_20211114_162135-5ec7c1cd.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune_20211114_162135.log.json)| | [above w/ finetune](./pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune.py) | 2x | 9.20 | 35.8 | 42.5 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune_20211114_162135-5ec7c1cd.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d_finetune_20211114_162135.log.json) |
|above w/ tta|2x|9.20|36.8|43.1|| | above w/ tta | 2x | 9.20 | 36.8 | 43.1 | |
## Citation ## Citation
......
...@@ -20,19 +20,19 @@ We implement PointRCNN and provide the result with checkpoints on KITTI dataset. ...@@ -20,19 +20,19 @@ We implement PointRCNN and provide the result with checkpoints on KITTI dataset.
### KITTI ### KITTI
| Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | | Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :---------: | :-----: |:-----: | :------: | :------------: | :----: |:----: | | :-------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [PointNet++](./point_rcnn_2x8_kitti-3d-3classes.py) |3 Class|cyclic 40e|4.6||70.83|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/point_rcnn/point_rcnn_2x8_kitti-3d-3classes_20211208_151344.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/point_rcnn/point_rcnn_2x8_kitti-3d-3classes_20211208_151344.log.json)| | [PointNet++](./point_rcnn_2x8_kitti-3d-3classes.py) | 3 Class | cyclic 40e | 4.6 | | 70.83 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/point_rcnn/point_rcnn_2x8_kitti-3d-3classes_20211208_151344.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/point_rcnn/point_rcnn_2x8_kitti-3d-3classes_20211208_151344.log.json) |
Note: mAP represents AP11 results on 3 Class under the moderate setting. Note: mAP represents AP11 results on 3 Class under the moderate setting.
Detailed performance on KITTI 3D detection (3D) is as follows, evaluated by AP11 metric: Detailed performance on KITTI 3D detection (3D) is as follows, evaluated by AP11 metric:
| | Easy | Moderate | Hard | | | Easy | Moderate | Hard |
|-------------|:-------------:|:--------------:|:------------:| | ---------- | :---: | :------: | :---: |
| Car | 89.13 | 78.72 | 78.24 | | Car | 89.13 | 78.72 | 78.24 |
| Pedestrian | 65.81 | 59.57 | 52.75 | | Pedestrian | 65.81 | 59.57 | 52.75 |
| Cyclist | 93.51 | 74.19 | 70.73 | | Cyclist | 93.51 | 74.19 | 70.73 |
## Citation ## Citation
......
...@@ -22,31 +22,33 @@ We implement PointNet++ and provide the result and checkpoints on ScanNet and S3 ...@@ -22,31 +22,33 @@ We implement PointNet++ and provide the result and checkpoints on ScanNet and S3
### ScanNet ### ScanNet
| Method | Input | Lr schd | Mem (GB) | Inf time (fps) | mIoU (Val set) | mIoU (Test set) | Download | | Method | Input | Lr schd | Mem (GB) | Inf time (fps) | mIoU (Val set) | mIoU (Test set) | Download |
| :-------------------------------------------------------------------------------------: | :-------: | :---------: | :------: | :------------: | :------------: | :-------------: | ------------------------ | | :-------------------------------------------------------------------------------------: | :-------: | :---------: | :------: | :------------: | :------------: | :-------------: | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| [PointNet++ (SSG)](./pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class.py) | XYZ | cosine 200e | 1.9 | | 53.91 | | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143628-4e341a48.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143628.log.json) | | [PointNet++ (SSG)](./pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class.py) | XYZ | cosine 200e | 1.9 | | 53.91 | | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143628-4e341a48.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_xyz-only_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143628.log.json) |
| [PointNet++ (SSG)](./pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py) | XYZ+Color | cosine 200e | 1.9 | | 54.44 | | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644.log.json) | | [PointNet++ (SSG)](./pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class.py) | XYZ+Color | cosine 200e | 1.9 | | 54.44 | | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644-ee73704a.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class/pointnet2_ssg_16x2_cosine_200e_scannet_seg-3d-20class_20210514_143644.log.json) |
| [PointNet++ (MSG)](./pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class.py) | XYZ | cosine 250e | 2.4 | | 54.26 | | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class_20210514_143838-b4a3cf89.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class_20210514_143838.log.json) | | [PointNet++ (MSG)](./pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class.py) | XYZ | cosine 250e | 2.4 | | 54.26 | | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class_20210514_143838-b4a3cf89.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class_20210514_143838.log.json) |
| [PointNet++ (MSG)](./pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class.py) | XYZ+Color | cosine 250e | 2.4 | | 55.05 | | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class_20210514_144009-24477ab1.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class_20210514_144009.log.json) | | [PointNet++ (MSG)](./pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class.py) | XYZ+Color | cosine 250e | 2.4 | | 55.05 | | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class_20210514_144009-24477ab1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class/pointnet2_msg_16x2_cosine_250e_scannet_seg-3d-20class_20210514_144009.log.json) |
**Notes:** **Notes:**
- The original PointNet++ paper conducted experiments on the ScanNet V1 dataset, while later point cloud segmentor papers often used ScanNet V2. Following common practice, we report results on the ScanNet V2 dataset. - The original PointNet++ paper conducted experiments on the ScanNet V1 dataset, while later point cloud segmentor papers often used ScanNet V2. Following common practice, we report results on the ScanNet V2 dataset.
- Since ScanNet dataset doesn't provide ground-truth labels for the test set, users can only evaluate test set performance by submitting to its online benchmark [website](http://kaldir.vc.in.tum.de/scannet_benchmark/). However, users are only allowed to submit once every two weeks. Therefore, we currently report val set mIoU. Test set performance may be added in the future.
- To generate submission file for ScanNet online benchmark, you need to modify the ScanNet dataset's [config](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/datasets/scannet_seg-3d-20class.py#L126). Change `ann_file=data_root + 'scannet_infos_val.pkl'` to `ann_file=data_root + 'scannet_infos_test.pkl'`, and then simply run:
```shell - Since ScanNet dataset doesn't provide ground-truth labels for the test set, users can only evaluate test set performance by submitting to its online benchmark [website](http://kaldir.vc.in.tum.de/scannet_benchmark/). However, users are only allowed to submit once every two weeks. Therefore, we currently report val set mIoU. Test set performance may be added in the future.
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --format-only --options 'txt_prefix=exps/pointnet2_scannet_results'
```
This will save the prediction results as `txt` files in `exps/pointnet2_scannet_results/`. Then, go to this folder and zip all files into `pn2_scannet.zip`. Now you can submit it to the online benchmark and wait for the test set result. More instructions can be found at their official [website](http://kaldir.vc.in.tum.de/scannet_benchmark/documentation#submission-policy). - To generate submission file for ScanNet online benchmark, you need to modify the ScanNet dataset's [config](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/_base_/datasets/scannet_seg-3d-20class.py#L126). Change `ann_file=data_root + 'scannet_infos_val.pkl'` to `ann_file=data_root + 'scannet_infos_test.pkl'`, and then simply run:
```shell
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --format-only --options 'txt_prefix=exps/pointnet2_scannet_results'
```
This will save the prediction results as `txt` files in `exps/pointnet2_scannet_results/`. Then, go to this folder and zip all files into `pn2_scannet.zip`. Now you can submit it to the online benchmark and wait for the test set result. More instructions can be found at their official [website](http://kaldir.vc.in.tum.de/scannet_benchmark/documentation#submission-policy).
### S3DIS ### S3DIS
| Method | Split | Lr schd | Mem (GB) | Inf time (fps) | mIoU (Val set) | Download | | Method | Split | Lr schd | Mem (GB) | Inf time (fps) | mIoU (Val set) | Download |
| :-------------------------------------------------------------------------: | :----: | :--------: | :------: | :------------: | :------------: | :----------------------: | | :-------------------------------------------------------------------------: | :----: | :--------: | :------: | :------------: | :------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [PointNet++ (SSG)](./pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class.py) | Area_5 | cosine 50e | 3.6 | | 56.93 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class_20210514_144205-995d0119.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class_20210514_144205.log.json) | | [PointNet++ (SSG)](./pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class.py) | Area_5 | cosine 50e | 3.6 | | 56.93 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class_20210514_144205-995d0119.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class/pointnet2_ssg_16x2_cosine_50e_s3dis_seg-3d-13class_20210514_144205.log.json) |
| [PointNet++ (MSG)](./pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class.py) | Area_5 | cosine 80e | 3.6 | | 58.04 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class_20210514_144307-b2059817.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class_20210514_144307.log.json) | | [PointNet++ (MSG)](./pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class.py) | Area_5 | cosine 80e | 3.6 | | 58.04 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class_20210514_144307-b2059817.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointnet2/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class/pointnet2_msg_16x2_cosine_80e_s3dis_seg-3d-13class_20210514_144307.log.json) |
**Notes:** **Notes:**
......
...@@ -20,48 +20,48 @@ We implement PointPillars and provide the results and checkpoints on KITTI, nuSc ...@@ -20,48 +20,48 @@ We implement PointPillars and provide the results and checkpoints on KITTI, nuSc
### KITTI ### KITTI
| Backbone|Class | Lr schd | Mem (GB) | Inf time (fps) | AP |Download | | Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | AP | Download |
| :---------: | :-----: |:-----: | :------: | :------------: | :----: | :------: | | :------------------------------------------------------------: | :-----: | :---------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py)|Car|cyclic 160e|5.4||77.6|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606.log.json)| | [SECFPN](./hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py) | Car | cyclic 160e | 5.4 | | 77.6 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606-d42d15ed.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20220331_134606.log.json) |
| [SECFPN](./hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py)|3 Class|cyclic 160e|5.5||64.07|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class_20220301_150306-37dc2420.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class_20220301_150306.log.json)| | [SECFPN](./hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py) | 3 Class | cyclic 160e | 5.5 | | 64.07 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class_20220301_150306-37dc2420.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class_20220301_150306.log.json) |
### nuScenes ### nuScenes
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :---------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|[SECFPN](./hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||34.33|49.1|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20210826_225857-f19d00a3.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20210826_225857.log.json)| | [SECFPN](./hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.4 | | 34.33 | 49.1 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20210826_225857-f19d00a3.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20210826_225857.log.json) |
|[SECFPN (FP16)](./hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py)|2x|8.37||35.19|50.27|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626-c3f0483e.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626.log.json)| | [SECFPN (FP16)](./hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py) | 2x | 8.37 | | 35.19 | 50.27 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626-c3f0483e.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626.log.json) |
|[FPN](./hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.3||39.7|53.2|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20210826_104936-fca299c1.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20210826_104936.log.json)| | [FPN](./hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.3 | | 39.7 | 53.2 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20210826_104936-fca299c1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20210826_104936.log.json) |
|[FPN (FP16)](./hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py)|2x|8.40||39.26|53.26|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719-269f9dd6.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719.log.json)| | [FPN (FP16)](./hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py) | 2x | 8.40 | | 39.26 | 53.26 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719-269f9dd6.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719.log.json) |
### Lyft ### Lyft
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | Private Score | Public Score | Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | Private Score | Public Score | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :----------------------------------------------------------: | :-----: | :------: | :------------: | :-----------: | :----------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|[SECFPN](./hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py)|2x|12.2||13.8|14.1|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210829_100455-82b81c39.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210829_100455.log.json)| | [SECFPN](./hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py) | 2x | 12.2 | | 13.8 | 14.1 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210829_100455-82b81c39.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210829_100455.log.json) |
|[FPN](./hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d.py)|2x|9.2||14.8|15.0|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210822_095429-0b3d6196.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210822_095429.log.json)| | [FPN](./hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d.py) | 2x | 9.2 | | 14.8 | 15.0 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210822_095429-0b3d6196.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210822_095429.log.json) |
### Waymo ### Waymo
| Backbone | Load Interval | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP@L1 | mAPH@L1 | mAP@L2 | **mAPH@L2** | Download | | Backbone | Load Interval | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP@L1 | mAPH@L1 | mAP@L2 | **mAPH@L2** | Download |
| :-------: | :-----------: |:-----:| :------:| :------: | :------------: | :----: | :-----: | :-----: | :-----: | :------: | | :-----------------------------------------------------------------: | :-----------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :----: | :---------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car.py)|5|Car|2x|7.76||70.2|69.6|62.6|62.1|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car_20200901_204315-302fc3e7.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car_20200901_204315.log.json)| | [SECFPN](./hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car.py) | 5 | Car | 2x | 7.76 | | 70.2 | 69.6 | 62.6 | 62.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car_20200901_204315-302fc3e7.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-car_20200901_204315.log.json) |
| [SECFPN](./hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py)|5|3 Class|2x|8.12||64.7|57.6|58.4|52.1|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class_20200831_204144-d1a706b1.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class_20200831_204144.log.json)| | [SECFPN](./hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py) | 5 | 3 Class | 2x | 8.12 | | 64.7 | 57.6 | 58.4 | 52.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class_20200831_204144-d1a706b1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class/hv_pointpillars_secfpn_sbn_2x16_2x_waymoD5-3d-3class_20200831_204144.log.json) |
| above @ Car|||2x|8.12||68.5|67.9|60.1|59.6| | | above @ Car | | | 2x | 8.12 | | 68.5 | 67.9 | 60.1 | 59.6 | |
| above @ Pedestrian|||2x|8.12||67.8|50.6|59.6|44.3| | | above @ Pedestrian | | | 2x | 8.12 | | 67.8 | 50.6 | 59.6 | 44.3 | |
| above @ Cyclist|||2x|8.12||57.7|54.4|55.5|52.4| | | above @ Cyclist | | | 2x | 8.12 | | 57.7 | 54.4 | 55.5 | 52.4 | |
| [SECFPN](./hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car.py)|1|Car|2x|7.76||72.1|71.5|63.6|63.1|[log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car.log.json)| | [SECFPN](./hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car.py) | 1 | Car | 2x | 7.76 | | 72.1 | 71.5 | 63.6 | 63.1 | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-car.log.json) |
| [SECFPN](./hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class.py)|1|3 Class|2x|8.12||68.8|63.3|62.6|57.6|[log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class.log.json)| | [SECFPN](./hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class.py) | 1 | 3 Class | 2x | 8.12 | | 68.8 | 63.3 | 62.6 | 57.6 | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class/hv_pointpillars_secfpn_sbn_2x16_2x_waymo-3d-3class.log.json) |
| above @ Car|||2x|8.12||71.6|71.0|63.1|62.5| | | above @ Car | | | 2x | 8.12 | | 71.6 | 71.0 | 63.1 | 62.5 | |
| above @ Pedestrian|||2x|8.12||70.6|56.7|62.9|50.2| | | above @ Pedestrian | | | 2x | 8.12 | | 70.6 | 56.7 | 62.9 | 50.2 | |
| above @ Cyclist|||2x|8.12||64.4|62.3|61.9|59.9| | | above @ Cyclist | | | 2x | 8.12 | | 64.4 | 62.3 | 61.9 | 59.9 | |
#### Note: #### Note:
- **Metric**: For model trained with 3 classes, the average APH@L2 (mAPH@L2) of all the categories is reported and used to rank the model. For model trained with only 1 class, the APH@L2 is reported and used to rank the model. - **Metric**: For model trained with 3 classes, the average APH@L2 (mAPH@L2) of all the categories is reported and used to rank the model. For model trained with only 1 class, the APH@L2 is reported and used to rank the model.
- **Data Split**: Here we provide several baselines for waymo dataset, among which D5 means that we divide the dataset into 5 folds and only use one fold for efficient experiments. Using the complete dataset can boost the performance a lot, especially for the detection of cyclist and pedestrian, where more than 5 mAP or mAPH improvement can be expected. - **Data Split**: Here we provide several baselines for waymo dataset, among which D5 means that we divide the dataset into 5 folds and only use one fold for efficient experiments. Using the complete dataset can boost the performance a lot, especially for the detection of cyclist and pedestrian, where more than 5 mAP or mAPH improvement can be expected.
- **Implementation Details**: We basically follow the implementation in the [paper](https://arxiv.org/pdf/1912.04838.pdf) in terms of the network architecture (having a - **Implementation Details**: We basically follow the implementation in the [paper](https://arxiv.org/pdf/1912.04838.pdf) in terms of the network architecture (having a
stride of 1 for the first convolutional block). Different settings of voxelization, data augmentation and hyper parameters make these baselines outperform those in the paper by about 7 mAP for car and 4 mAP for pedestrian with only a subset of the whole dataset. All of these results are achieved without bells-and-whistles, e.g. ensemble, multi-scale training and test augmentation. stride of 1 for the first convolutional block). Different settings of voxelization, data augmentation and hyper parameters make these baselines outperform those in the paper by about 7 mAP for car and 4 mAP for pedestrian with only a subset of the whole dataset. All of these results are achieved without bells-and-whistles, e.g. ensemble, multi-scale training and test augmentation.
- **License Aggrement**: To comply the [license agreement of Waymo dataset](https://waymo.com/open/terms/), the pre-trained models on Waymo dataset are not released. We still release the training log as a reference to ease the future research. - **License Aggrement**: To comply the [license agreement of Waymo dataset](https://waymo.com/open/terms/), the pre-trained models on Waymo dataset are not released. We still release the training log as a reference to ease the future research.
- `FP16` means Mixed Precision (FP16) is adopted in training. With mixed precision training, we can train PointPillars with nuScenes dataset on 8 Titan XP GPUS with batch size of 2. This will cause OOM error without mixed precision training. The loss scale for PointPillars on nuScenes dataset is specifically tuned to avoid the loss to be Nan. We find 32 is more stable than 512, though loss scale 32 still cause Nan sometimes. - `FP16` means Mixed Precision (FP16) is adopted in training. With mixed precision training, we can train PointPillars with nuScenes dataset on 8 Titan XP GPUS with batch size of 2. This will cause OOM error without mixed precision training. The loss scale for PointPillars on nuScenes dataset is specifically tuned to avoid the loss to be Nan. We find 32 is more stable than 512, though loss scale 32 still cause Nan sometimes.
......
...@@ -23,7 +23,7 @@ db_sampler = dict( ...@@ -23,7 +23,7 @@ db_sampler = dict(
train_pipeline = [ train_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(type='ObjectSample', db_sampler=db_sampler, use_ground_plane=False), dict(type='ObjectSample', db_sampler=db_sampler, use_ground_plane=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict( dict(
type='GlobalRotScaleTrans', type='GlobalRotScaleTrans',
......
...@@ -8,7 +8,7 @@ model = dict( ...@@ -8,7 +8,7 @@ model = dict(
num_classes=1, num_classes=1,
anchor_generator=dict( anchor_generator=dict(
_delete_=True, _delete_=True,
type='Anchor3DRangeGenerator', type='AlignedAnchor3DRangeGenerator',
ranges=[[0, -39.68, -1.78, 69.12, 39.68, -1.78]], ranges=[[0, -39.68, -1.78, 69.12, 39.68, -1.78]],
sizes=[[3.9, 1.6, 1.56]], sizes=[[3.9, 1.6, 1.56]],
rotations=[0, 1.57], rotations=[0, 1.57],
...@@ -42,13 +42,7 @@ db_sampler = dict( ...@@ -42,13 +42,7 @@ db_sampler = dict(
train_pipeline = [ train_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(type='ObjectSample', db_sampler=db_sampler), dict(type='ObjectSample', db_sampler=db_sampler, use_ground_plane=True),
dict(
type='ObjectNoise',
num_try=100,
translation_std=[0.25, 0.25, 0.25],
global_rot_range=[0.0, 0.0],
rot_range=[-0.15707963267, 0.15707963267]),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict( dict(
type='GlobalRotScaleTrans', type='GlobalRotScaleTrans',
......
...@@ -21,6 +21,7 @@ The pre-trained modles are converted from [model zoo of pycls](https://github.co ...@@ -21,6 +21,7 @@ The pre-trained modles are converted from [model zoo of pycls](https://github.co
## Usage ## Usage
To use a regnet model, there are two steps to do: To use a regnet model, there are two steps to do:
1. Convert the model to ResNet-style supported by MMDetection 1. Convert the model to ResNet-style supported by MMDetection
2. Modify backbone and neck in config accordingly 2. Modify backbone and neck in config accordingly
...@@ -34,8 +35,8 @@ ResNet-style checkpoints used in MMDetection. ...@@ -34,8 +35,8 @@ ResNet-style checkpoints used in MMDetection.
```bash ```bash
python -u tools/model_converters/regnet2mmdet.py ${PRETRAIN_PATH} ${STORE_PATH} python -u tools/model_converters/regnet2mmdet.py ${PRETRAIN_PATH} ${STORE_PATH}
``` ```
This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`.
This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`.
### Modify config ### Modify config
...@@ -50,22 +51,22 @@ For other pre-trained models or self-implemented regnet models, the users are re ...@@ -50,22 +51,22 @@ For other pre-trained models or self-implemented regnet models, the users are re
### nuScenes ### nuScenes
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :------------------------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :--: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|[SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||35.17|49.7|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json)| | [SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.4 | | 35.17 | 49.7 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json) |
|[RegNetX-400MF-SECFPN](./hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py)| 2x |16.4||41.2|55.2|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334.log.json)| | [RegNetX-400MF-SECFPN](./hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.4 | | 41.2 | 55.2 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334.log.json) |
|[FPN](../pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|17.1||40.0|53.3|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405.log.json)| | [FPN](../pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 17.1 | | 40.0 | 53.3 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405.log.json) |
|[RegNetX-400MF-FPN](./hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|17.3||44.8|56.4|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239-c694dce7.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239.log.json)| | [RegNetX-400MF-FPN](./hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 17.3 | | 44.8 | 56.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239-c694dce7.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239.log.json) |
|[RegNetX-1.6gF-FPN](./hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|24.0||48.2|59.3|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d_20200629_050311-dcd4e090.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d_20200629_050311.log.json)| | [RegNetX-1.6gF-FPN](./hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 24.0 | | 48.2 | 59.3 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d_20200629_050311-dcd4e090.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d_20200629_050311.log.json) |
### Lyft ### Lyft
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | Private Score | Public Score | Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | Private Score | Public Score | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :-------------------------------------------------------------------------------------: | :-----: | :------: | :------------: | :-----------: | :----------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|[SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py)|2x|12.2||13.9|14.1|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807-2518e3de.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807.log.json)| | [SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py) | 2x | 12.2 | | 13.9 | 14.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807-2518e3de.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807.log.json) |
|[RegNetX-400MF-SECFPN](./hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_lyft-3d.py)| 2x |15.9||14.9|15.1|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d_20210524_092151-42513826.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d_20210524_092151.log.json)| | [RegNetX-400MF-SECFPN](./hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_lyft-3d.py) | 2x | 15.9 | | 14.9 | 15.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d_20210524_092151-42513826.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_2x8_2x_lyft-3d_20210524_092151.log.json) |
|[FPN](../pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d.py)|2x|9.2||14.9|15.1|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210517_202818-fc6904c3.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210517_202818.log.json)| | [FPN](../pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d.py) | 2x | 9.2 | | 14.9 | 15.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210517_202818-fc6904c3.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_fpn_sbn-all_2x8_2x_lyft-3d_20210517_202818.log.json) |
|[RegNetX-400MF-FPN](./hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_lyft-3d.py)|2x|13.0||16.0|16.1|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d_20210521_115618-823dcf18.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d_20210521_115618.log.json)| | [RegNetX-400MF-FPN](./hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_lyft-3d.py) | 2x | 13.0 | | 16.0 | 16.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d_20210521_115618-823dcf18.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_2x8_2x_lyft-3d_20210521_115618.log.json) |
## Citation ## Citation
......
# Structure Aware Single-stage 3D Object Detection from Point Cloud
> [Structure Aware Single-stage 3D Object Detection from Point Cloud]([https://arxiv.org/abs/2104.02323](https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Structure_Aware_Single-Stage_3D_Object_Detection_From_Point_Cloud_CVPR_2020_paper.pdf))
<!-- [ALGORITHM] -->
## Abstract
3D object detection from point cloud data plays an essential role in autonomous driving. Current single-stage detectors are efficient by progressively downscaling the 3D point clouds in a fully convolutional manner. However, the downscaled features inevitably lose spatial information and cannot make full use of the structure information of 3D point cloud, degrading their localization precision. In this work, we propose to improve the localization precision of single-stage detectors by explicitly leveraging the structure information of 3D point cloud. Specifically, we design an auxiliary network which converts the convolutional features in the backbone network back to point-level representations. The auxiliary network is jointly optimized, by two point-level supervisions, to guide the convolutional features in the backbone network to be aware of the object structure. The auxiliary network can be detached after training and therefore introduces no extra computation in the inference stage. Besides, considering that single-stage detectors suffer from the discordance between the predicted bounding boxes and corresponding classification confidences, we develop an efficient part-sensitive warping operation to align the confidences to the predicted bounding boxes. Our proposed detector ranks at the top of KITTI 3D/BEV detection leaderboards and runs at 25 FPS for inference.
<div align=center>
<img src="https://user-images.githubusercontent.com/30491025/172526367-c8b9bdf7-f901-4f2f-8855-bfd55c39f8d1.png" width="800"/>
</div>
## Introduction
We implement SA-SSD and provide the results and checkpoints on KITTI dataset.
## Citation
```latex
@InProceedings{he2020sassd,
title={Structure Aware Single-stage 3D Object Detection from Point Cloud},
author={He, Chenhang and Zeng, Hui and Huang, Jianqiang and Hua, Xian-Sheng and Zhang, Lei},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
year={2020}
}
```
_base_ = [
'../_base_/datasets/kitti-3d-3class.py',
'../_base_/schedules/cyclic_40e.py', '../_base_/default_runtime.py'
]
voxel_size = [0.05, 0.05, 0.1]
model = dict(
type='SASSD',
voxel_layer=dict(
max_num_points=5,
point_cloud_range=[0, -40, -3, 70.4, 40, 1],
voxel_size=voxel_size,
max_voxels=(16000, 40000)),
voxel_encoder=dict(type='HardSimpleVFE'),
middle_encoder=dict(
type='SparseEncoderSASSD',
in_channels=4,
sparse_shape=[41, 1600, 1408],
order=('conv', 'norm', 'act')),
backbone=dict(
type='SECOND',
in_channels=256,
layer_nums=[5, 5],
layer_strides=[1, 2],
out_channels=[128, 256]),
neck=dict(
type='SECONDFPN',
in_channels=[128, 256],
upsample_strides=[1, 2],
out_channels=[256, 256]),
bbox_head=dict(
type='Anchor3DHead',
num_classes=3,
in_channels=512,
feat_channels=512,
use_direction_classifier=True,
anchor_generator=dict(
type='Anchor3DRangeGenerator',
ranges=[
[0, -40.0, -0.6, 70.4, 40.0, -0.6],
[0, -40.0, -0.6, 70.4, 40.0, -0.6],
[0, -40.0, -1.78, 70.4, 40.0, -1.78],
],
sizes=[[0.6, 0.8, 1.73], [0.6, 1.76, 1.73], [1.6, 3.9, 1.56]],
rotations=[0, 1.57],
reshape_out=False),
diff_rad_by_sin=True,
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)),
# model training and testing settings
train_cfg=dict(
assigner=[
dict( # for Pedestrian
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.35,
neg_iou_thr=0.2,
min_pos_iou=0.2,
ignore_iof_thr=-1),
dict( # for Cyclist
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.35,
neg_iou_thr=0.2,
min_pos_iou=0.2,
ignore_iof_thr=-1),
dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
],
allowed_border=0,
pos_weight=-1,
debug=False),
test_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50))
...@@ -20,21 +20,21 @@ We implement SECOND and provide the results and checkpoints on KITTI dataset. ...@@ -20,21 +20,21 @@ We implement SECOND and provide the results and checkpoints on KITTI dataset.
### KITTI ### KITTI
| Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP |Download | | Backbone | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :-----------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-car.py)| Car |cyclic 80e|5.4||79.07|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238.log.json)| | [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-car.py) | Car | cyclic 80e | 5.4 | | 79.07 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238.log.json) |
| [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py)| Car |cyclic 80e|2.9||78.72|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301-1f5ad833.pth)&#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301.log.json)| | [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py) | Car | cyclic 80e | 2.9 | | 78.72 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301-1f5ad833.pth)\| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301.log.json) |
| [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-3class.py)| 3 Class |cyclic 80e|5.4||65.74|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017-ae782e87.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017log.json)| | [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 5.4 | | 65.74 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017-ae782e87.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017log.json) |
| [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py)| 3 Class |cyclic 80e|2.9||67.4|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059-05f67bdf.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059.log.json)| | [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py) | 3 Class | cyclic 80e | 2.9 | | 67.4 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059-05f67bdf.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059.log.json) |
### Waymo ### Waymo
| Backbone | Load Interval | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP@L1 | mAPH@L1 | mAP@L2 | **mAPH@L2** | Download | | Backbone | Load Interval | Class | Lr schd | Mem (GB) | Inf time (fps) | mAP@L1 | mAPH@L1 | mAP@L2 | **mAPH@L2** | Download |
| :-------: | :-----------: |:-----:| :------:| :------: | :------------: | :----: | :-----: | :-----: | :-----: | :------: | | :-----------------------------------------------------------: | :-----------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :----: | :---------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./hv_second_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py)|5|3 Class|2x|8.12||65.3|61.7|58.9|55.7|[log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class_20201115_112448.log.json)| | [SECFPN](./hv_second_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py) | 5 | 3 Class | 2x | 8.12 | | 65.3 | 61.7 | 58.9 | 55.7 | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class_20201115_112448.log.json) |
| above @ Car|||2x|8.12||67.1|66.6|58.7|58.2| | | above @ Car | | | 2x | 8.12 | | 67.1 | 66.6 | 58.7 | 58.2 | |
| above @ Pedestrian|||2x|8.12||68.1|59.1|59.5|51.5| | | above @ Pedestrian | | | 2x | 8.12 | | 68.1 | 59.1 | 59.5 | 51.5 | |
| above @ Cyclist|||2x|8.12||60.7|59.5|58.4|57.3| | | above @ Cyclist | | | 2x | 8.12 | | 60.7 | 59.5 | 58.4 | 57.3 | |
Note: Note:
......
...@@ -20,19 +20,19 @@ We implement SMOKE and provide the results and checkpoints on KITTI dataset. ...@@ -20,19 +20,19 @@ We implement SMOKE and provide the results and checkpoints on KITTI dataset.
### KITTI ### KITTI
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :---------: | :-----: | :------: | :------------: | :----: | :------: | | :------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|[DLA34](./smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d.py)|6x|9.64||13.85|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553-d46d9bb0.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553.log.json) | [DLA34](./smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d.py) | 6x | 9.64 | | 13.85 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553-d46d9bb0.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/smoke/smoke_dla34_pytorch_dlaneck_gn-all_8x4_6x_kitti-mono3d_20210929_015553.log.json) |
Note: mAP represents Car moderate 3D strict AP11 results. Note: mAP represents Car moderate 3D strict AP11 results.
Detailed performance on KITTI 3D detection (3D/BEV) is as follows, evaluated by AP11 metric: Detailed performance on KITTI 3D detection (3D/BEV) is as follows, evaluated by AP11 metric:
| | Easy | Moderate | Hard | | | Easy | Moderate | Hard |
|-------------|:-------------:|:--------------:|:------------:| | ---------- | :-----------: | :-----------: | :-----------: |
| Car | 16.92 / 22.97 | 13.85 / 18.32 | 11.90 / 15.88| | Car | 16.92 / 22.97 | 13.85 / 18.32 | 11.90 / 15.88 |
| Pedestrian | 11.13 / 12.61| 11.10 / 11.32 | 10.67 / 11.14| | Pedestrian | 11.13 / 12.61 | 11.10 / 11.32 | 10.67 / 11.14 |
| Cyclist | 0.99 / 1.47 | 0.54 / 0.65 | 0.55 / 0.67 | | Cyclist | 0.99 / 1.47 | 0.54 / 0.65 | 0.55 / 0.67 |
## Citation ## Citation
......
...@@ -20,20 +20,20 @@ We implement PointPillars with Shape-aware grouping heads used in the SSN and pr ...@@ -20,20 +20,20 @@ We implement PointPillars with Shape-aware grouping heads used in the SSN and pr
### NuScenes ### NuScenes
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP | NDS | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :--------------------------------------------------------------------------------------------: | :-----: | :------: | :------------: | :---: | :---: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|[SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||35.17|49.76|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json)| | [SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.4 | | 35.17 | 49.76 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json) |
|[SSN](./hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py)|2x|3.6||40.91|54.44|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351-51915986.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351.log.json)| | [SSN](./hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d.py) | 2x | 3.6 | | 40.91 | 54.44 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351-51915986.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_secfpn_sbn-all_2x16_2x_nus-3d_20210830_101351.log.json) |
[RegNetX-400MF-SECFPN](../regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||41.15|55.20|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334.log.json)| | [RegNetX-400MF-SECFPN](../regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py) | 2x | 16.4 | | 41.15 | 55.20 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334.log.json) |
|[RegNetX-400MF-SSN](./hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py)|2x|5.1||46.65|58.24|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615-361e5e04.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615.log.json)| | [RegNetX-400MF-SSN](./hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d.py) | 2x | 5.1 | | 46.65 | 58.24 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615-361e5e04.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_2x16_2x_nus-3d_20210829_210615.log.json) |
### Lyft ### Lyft
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | Private Score | Public Score | Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | Private Score | Public Score | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :--------------------------------------------------------------------------: | :-----: | :------: | :------------: | :-----------: | :----------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|[SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py)|2x|12.2||13.9|14.1|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807-2518e3de.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807.log.json)| | [SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d.py) | 2x | 12.2 | | 13.9 | 14.1 | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807-2518e3de.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d/hv_pointpillars_secfpn_sbn-all_2x8_2x_lyft-3d_20210517_204807.log.json) |
|[SSN](./hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py)|2x|8.5||17.5|17.5|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731-46841b41.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731.log.json)| | [SSN](./hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py) | 2x | 8.5 | | 17.5 | 17.5 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731-46841b41.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d_20210822_134731.log.json) |
|[RegNetX-400MF-SSN](./hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d.py)|2x|7.4||17.9|18|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825-d93475a1.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825.log.json)| | [RegNetX-400MF-SSN](./hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d.py) | 2x | 7.4 | | 17.9 | 18 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825-d93475a1.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/ssn/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d/hv_ssn_regnet-400mf_secfpn_sbn-all_1x16_2x_lyft-3d_20210829_122825.log.json) |
Note: Note:
......
...@@ -20,17 +20,17 @@ We implement VoteNet and provide the result and checkpoints on ScanNet and SUNRG ...@@ -20,17 +20,17 @@ We implement VoteNet and provide the result and checkpoints on ScanNet and SUNRG
### ScanNet ### ScanNet
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 |AP@0.5| Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :-----------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [PointNet++](./votenet_8x8_scannet-3d-18class.py) | 3x |4.1||62.34|40.82|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503.log.json)| | [PointNet++](./votenet_8x8_scannet-3d-18class.py) | 3x | 4.1 | | 62.34 | 40.82 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503-cf8134fa.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20210823_234503.log.json) |
### SUNRGBD ### SUNRGBD
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 |AP@0.5| Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :------------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [PointNet++](./votenet_16x8_sunrgbd-3d-10class.py) | 3x |8.1||59.78|35.77|[model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823.log.json)| | [PointNet++](./votenet_16x8_sunrgbd-3d-10class.py) | 3x | 8.1 | | 59.78 | 35.77 | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823-bf11f014.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20210820_162823.log.json) |
**Notice**: If your current mmdetection3d version >= 0.6.0, and you are using the checkpoints downloaded from the above links or using checkpoints trained with mmdetection3d version < 0.6.0, the checkpoints have to be first converted via [tools/model_converters/convert_votenet_checkpoints.py](../../tools/model_converters/convert_votenet_checkpoints.py): **Notice**: If your current mmdetection3d version >= 0.6.0, and you are using the checkpoints downloaded from the above links or using checkpoints trained with mmdetection3d version \< 0.6.0, the checkpoints have to be first converted via [tools/model_converters/convert_votenet_checkpoints.py](../../tools/model_converters/convert_votenet_checkpoints.py):
``` ```
python ./tools/model_converters/convert_votenet_checkpoints.py ${ORIGINAL_CHECKPOINT_PATH} --out=${NEW_CHECKPOINT_PATH} python ./tools/model_converters/convert_votenet_checkpoints.py ${ORIGINAL_CHECKPOINT_PATH} --out=${NEW_CHECKPOINT_PATH}
...@@ -50,9 +50,9 @@ Adding IoU loss (simply = 1-IoU) boosts VoteNet's performance. To use IoU loss, ...@@ -50,9 +50,9 @@ Adding IoU loss (simply = 1-IoU) boosts VoteNet's performance. To use IoU loss,
iou_loss=dict(type='AxisAlignedIoULoss', reduction='sum', loss_weight=10.0 / 3.0) iou_loss=dict(type='AxisAlignedIoULoss', reduction='sum', loss_weight=10.0 / 3.0)
``` ```
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 |AP@0.5| Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :-------------------------------------------------------: | :-----: | :------: | :------------: | :-----: | :----: | :------: |
| [PointNet++](./votenet_iouloss_8x8_scannet-3d-18class.py) | 3x |4.1||63.81|44.21|/| | [PointNet++](./votenet_iouloss_8x8_scannet-3d-18class.py) | 3x | 4.1 | | 63.81 | 44.21 | / |
For now, we only support calculating IoU loss for axis-aligned bounding boxes since the CUDA op of general 3D IoU calculation does not implement the backward method. Therefore, IoU loss can only be used for ScanNet dataset for now. For now, we only support calculating IoU loss for axis-aligned bounding boxes since the CUDA op of general 3D IoU calculation does not implement the backward method. Therefore, IoU loss can only be used for ScanNet dataset for now.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment