Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
mmdetection3d
Commits
94bbd751
"vscode:/vscode.git/clone" did not exist on "47af8be9072b26f85c445b90df3c759a52bd7f73"
Commit
94bbd751
authored
May 10, 2020
by
liyinhao
Browse files
merge master
parents
f201ba68
84569a41
Changes
23
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
34 additions
and
4 deletions
+34
-4
tests/test_indoor_sample.py
tests/test_indoor_sample.py
+1
-1
tests/test_roi_extractors.py
tests/test_roi_extractors.py
+30
-0
tools/data_converter/sunrgbd_data_utils.py
tools/data_converter/sunrgbd_data_utils.py
+3
-3
No files found.
tests/test_indoor_sample.py
View file @
94bbd751
import
numpy
as
np
from
mmdet3d.datasets.pipelines
.indoor_sample
import
PointSample
from
mmdet3d.datasets.pipelines
import
PointSample
def
test_indoor_sample
():
...
...
tests/test_roi_extractors.py
0 → 100644
View file @
94bbd751
import
pytest
import
torch
from
mmdet3d.models.roi_heads.roi_extractors
import
Single3DRoIAwareExtractor
def
test_single_roiaware_extractor
():
if
not
torch
.
cuda
.
is_available
():
pytest
.
skip
(
'test requires GPU and torch+cuda'
)
roi_layer_cfg
=
dict
(
type
=
'RoIAwarePool3d'
,
out_size
=
4
,
max_pts_per_voxel
=
128
,
mode
=
'max'
)
self
=
Single3DRoIAwareExtractor
(
roi_layer
=
roi_layer_cfg
)
feats
=
torch
.
tensor
(
[[
1
,
2
,
3.3
],
[
1.2
,
2.5
,
3.0
],
[
0.8
,
2.1
,
3.5
],
[
1.6
,
2.6
,
3.6
],
[
0.8
,
1.2
,
3.9
],
[
-
9.2
,
21.0
,
18.2
],
[
3.8
,
7.9
,
6.3
],
[
4.7
,
3.5
,
-
12.2
],
[
3.8
,
7.6
,
-
2
],
[
-
10.6
,
-
12.9
,
-
20
],
[
-
16
,
-
18
,
9
],
[
-
21.3
,
-
52
,
-
5
],
[
0
,
0
,
0
],
[
6
,
7
,
8
],
[
-
2
,
-
3
,
-
4
]],
dtype
=
torch
.
float32
).
cuda
()
coordinate
=
feats
.
clone
()
batch_inds
=
torch
.
zeros
(
feats
.
shape
[
0
]).
cuda
()
rois
=
torch
.
tensor
([[
0
,
1.0
,
2.0
,
3.0
,
4.0
,
5.0
,
6.0
,
0.3
],
[
0
,
-
10.0
,
23.0
,
16.0
,
10
,
20
,
20
,
0.5
]],
dtype
=
torch
.
float32
).
cuda
()
# test forward
pooled_feats
=
self
(
feats
,
coordinate
,
batch_inds
,
rois
)
assert
pooled_feats
.
shape
==
torch
.
Size
([
2
,
4
,
4
,
4
,
3
])
assert
torch
.
allclose
(
pooled_feats
.
sum
(),
torch
.
tensor
(
51.100
).
cuda
(),
1e-3
)
tools/data_converter/sunrgbd_data_utils.py
View file @
94bbd751
...
...
@@ -146,9 +146,9 @@ class SUNRGBDData(object):
pc_upright_depth
=
self
.
get_depth
(
sample_idx
)
pc_upright_depth_subsampled
=
random_sampling
(
pc_upright_depth
,
SAMPLE_NUM
)
np
.
save
z_compressed
(
os
.
path
.
join
(
self
.
root_dir
,
'lidar'
,
f
'
{
sample_idx
:
06
d
}
.np
z
'
),
pc
=
pc_upright_depth_subsampled
)
np
.
save
(
os
.
path
.
join
(
self
.
root_dir
,
'lidar'
,
f
'
{
sample_idx
:
06
d
}
.np
y
'
),
pc_upright_depth_subsampled
)
info
=
dict
()
pc_info
=
{
'num_features'
:
6
,
'lidar_idx'
:
sample_idx
}
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment