Commit 8dd8da12 authored by ZwwWayne's avatar ZwwWayne Committed by ChaimZhu
Browse files

fix spconv2 issue in unit tests

parent c9b69f5a
...@@ -3,7 +3,7 @@ import platform ...@@ -3,7 +3,7 @@ import platform
from mmcv.utils import build_from_cfg from mmcv.utils import build_from_cfg
from mmdet.datasets import DATASETS as MMDET_DATASETS from mmdet3d.registry import DATASETS
from mmdet.datasets.builder import _concat_dataset from mmdet.datasets.builder import _concat_dataset
if platform.system() != 'Windows': if platform.system() != 'Windows':
......
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmdet3d.ops.spconv import IS_SPCONV2_AVAILABLE
if IS_SPCONV2_AVAILABLE:
from spconv.pytorch import SparseConvTensor, SparseSequential
else:
from mmcv.ops import SparseConvTensor, SparseSequential
from mmcv.runner import BaseModule, auto_fp16
from mmdet3d.ops import SparseBasicBlock, make_sparse_convmodule
from ..builder import MIDDLE_ENCODERS
@MIDDLE_ENCODERS.register_module()
class SparseUNet(BaseModule):
r"""SparseUNet for PartA^2.
See the `paper <https://arxiv.org/abs/1907.03670>`_ for more details.
Args:
in_channels (int): The number of input channels.
sparse_shape (list[int]): The sparse shape of input tensor.
norm_cfg (dict): Config of normalization layer.
base_channels (int): Out channels for conv_input layer.
output_channels (int): Out channels for conv_out layer.
encoder_channels (tuple[tuple[int]]):
Convolutional channels of each encode block.
encoder_paddings (tuple[tuple[int]]): Paddings of each encode block.
decoder_channels (tuple[tuple[int]]):
Convolutional channels of each decode block.
decoder_paddings (tuple[tuple[int]]): Paddings of each decode block.
"""
def __init__(self,
in_channels,
sparse_shape,
order=('conv', 'norm', 'act'),
norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
base_channels=16,
output_channels=128,
encoder_channels=((16, ), (32, 32, 32), (64, 64, 64), (64, 64,
64)),
encoder_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1,
1)),
decoder_channels=((64, 64, 64), (64, 64, 32), (32, 32, 16),
(16, 16, 16)),
decoder_paddings=((1, 0), (1, 0), (0, 0), (0, 1)),
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.sparse_shape = sparse_shape
self.in_channels = in_channels
self.order = order
self.base_channels = base_channels
self.output_channels = output_channels
self.encoder_channels = encoder_channels
self.encoder_paddings = encoder_paddings
self.decoder_channels = decoder_channels
self.decoder_paddings = decoder_paddings
self.stage_num = len(self.encoder_channels)
self.fp16_enabled = False
# Spconv init all weight on its own
assert isinstance(order, tuple) and len(order) == 3
assert set(order) == {'conv', 'norm', 'act'}
if self.order[0] != 'conv': # pre activate
self.conv_input = make_sparse_convmodule(
in_channels,
self.base_channels,
3,
norm_cfg=norm_cfg,
padding=1,
indice_key='subm1',
conv_type='SubMConv3d',
order=('conv', ))
else: # post activate
self.conv_input = make_sparse_convmodule(
in_channels,
self.base_channels,
3,
norm_cfg=norm_cfg,
padding=1,
indice_key='subm1',
conv_type='SubMConv3d')
encoder_out_channels = self.make_encoder_layers(
make_sparse_convmodule, norm_cfg, self.base_channels)
self.make_decoder_layers(make_sparse_convmodule, norm_cfg,
encoder_out_channels)
self.conv_out = make_sparse_convmodule(
encoder_out_channels,
self.output_channels,
kernel_size=(3, 1, 1),
stride=(2, 1, 1),
norm_cfg=norm_cfg,
padding=0,
indice_key='spconv_down2',
conv_type='SparseConv3d')
@auto_fp16(apply_to=('voxel_features', ))
def forward(self, voxel_features, coors, batch_size):
"""Forward of SparseUNet.
Args:
voxel_features (torch.float32): Voxel features in shape [N, C].
coors (torch.int32): Coordinates in shape [N, 4],
the columns in the order of (batch_idx, z_idx, y_idx, x_idx).
batch_size (int): Batch size.
Returns:
dict[str, torch.Tensor]: Backbone features.
"""
coors = coors.int()
input_sp_tensor = SparseConvTensor(voxel_features, coors,
self.sparse_shape, batch_size)
x = self.conv_input(input_sp_tensor)
encode_features = []
for encoder_layer in self.encoder_layers:
x = encoder_layer(x)
encode_features.append(x)
# for detection head
# [200, 176, 5] -> [200, 176, 2]
out = self.conv_out(encode_features[-1])
spatial_features = out.dense()
N, C, D, H, W = spatial_features.shape
spatial_features = spatial_features.view(N, C * D, H, W)
# for segmentation head, with output shape:
# [400, 352, 11] <- [200, 176, 5]
# [800, 704, 21] <- [400, 352, 11]
# [1600, 1408, 41] <- [800, 704, 21]
# [1600, 1408, 41] <- [1600, 1408, 41]
decode_features = []
x = encode_features[-1]
for i in range(self.stage_num, 0, -1):
x = self.decoder_layer_forward(encode_features[i - 1], x,
getattr(self, f'lateral_layer{i}'),
getattr(self, f'merge_layer{i}'),
getattr(self, f'upsample_layer{i}'))
decode_features.append(x)
seg_features = decode_features[-1].features
ret = dict(
spatial_features=spatial_features, seg_features=seg_features)
return ret
def decoder_layer_forward(self, x_lateral, x_bottom, lateral_layer,
merge_layer, upsample_layer):
"""Forward of upsample and residual block.
Args:
x_lateral (:obj:`SparseConvTensor`): Lateral tensor.
x_bottom (:obj:`SparseConvTensor`): Feature from bottom layer.
lateral_layer (SparseBasicBlock): Convolution for lateral tensor.
merge_layer (SparseSequential): Convolution for merging features.
upsample_layer (SparseSequential): Convolution for upsampling.
Returns:
:obj:`SparseConvTensor`: Upsampled feature.
"""
x = lateral_layer(x_lateral)
if IS_SPCONV2_AVAILABLE:
# TODO: try to clean this since it is for the compatibility
# between spconv 1.x & 2
x = x.replace_feature(
torch.cat((x_bottom.features, x.features), dim=1))
else:
x.features = torch.cat((x_bottom.features, x.features), dim=1)
x_merge = merge_layer(x)
x = self.reduce_channel(x, x_merge.features.shape[1])
if IS_SPCONV2_AVAILABLE:
# TODO: try to clean this since it is for the compatibility
# between spconv 1.x & 2
x = x.replace_feature(x_merge.features + x.features)
else:
x.features = x_merge.features + x.features
x = upsample_layer(x)
return x
@staticmethod
def reduce_channel(x, out_channels):
"""reduce channel for element-wise addition.
Args:
x (:obj:`SparseConvTensor`): Sparse tensor, ``x.features``
are in shape (N, C1).
out_channels (int): The number of channel after reduction.
Returns:
:obj:`SparseConvTensor`: Channel reduced feature.
"""
features = x.features
n, in_channels = features.shape
assert (in_channels % out_channels
== 0) and (in_channels >= out_channels)
x.features = features.view(n, out_channels, -1).sum(dim=2)
return x
def make_encoder_layers(self, make_block, norm_cfg, in_channels):
"""make encoder layers using sparse convs.
Args:
make_block (method): A bounded function to build blocks.
norm_cfg (dict[str]): Config of normalization layer.
in_channels (int): The number of encoder input channels.
Returns:
int: The number of encoder output channels.
"""
self.encoder_layers = SparseSequential()
for i, blocks in enumerate(self.encoder_channels):
blocks_list = []
for j, out_channels in enumerate(tuple(blocks)):
padding = tuple(self.encoder_paddings[i])[j]
# each stage started with a spconv layer
# except the first stage
if i != 0 and j == 0:
blocks_list.append(
make_block(
in_channels,
out_channels,
3,
norm_cfg=norm_cfg,
stride=2,
padding=padding,
indice_key=f'spconv{i + 1}',
conv_type='SparseConv3d'))
else:
blocks_list.append(
make_block(
in_channels,
out_channels,
3,
norm_cfg=norm_cfg,
padding=padding,
indice_key=f'subm{i + 1}',
conv_type='SubMConv3d'))
in_channels = out_channels
stage_name = f'encoder_layer{i + 1}'
stage_layers = SparseSequential(*blocks_list)
self.encoder_layers.add_module(stage_name, stage_layers)
return out_channels
def make_decoder_layers(self, make_block, norm_cfg, in_channels):
"""make decoder layers using sparse convs.
Args:
make_block (method): A bounded function to build blocks.
norm_cfg (dict[str]): Config of normalization layer.
in_channels (int): The number of encoder input channels.
Returns:
int: The number of encoder output channels.
"""
block_num = len(self.decoder_channels)
for i, block_channels in enumerate(self.decoder_channels):
paddings = self.decoder_paddings[i]
setattr(
self, f'lateral_layer{block_num - i}',
SparseBasicBlock(
in_channels,
block_channels[0],
conv_cfg=dict(
type='SubMConv3d', indice_key=f'subm{block_num - i}'),
norm_cfg=norm_cfg))
setattr(
self, f'merge_layer{block_num - i}',
make_block(
in_channels * 2,
block_channels[1],
3,
norm_cfg=norm_cfg,
padding=paddings[0],
indice_key=f'subm{block_num - i}',
conv_type='SubMConv3d'))
if block_num - i != 1:
setattr(
self, f'upsample_layer{block_num - i}',
make_block(
in_channels,
block_channels[2],
3,
norm_cfg=norm_cfg,
indice_key=f'spconv{block_num - i}',
conv_type='SparseInverseConv3d'))
else:
# use submanifold conv instead of inverse conv
# in the last block
setattr(
self, f'upsample_layer{block_num - i}',
make_block(
in_channels,
block_channels[2],
3,
norm_cfg=norm_cfg,
padding=paddings[1],
indice_key='subm1',
conv_type='SubMConv3d'))
in_channels = block_channels[2]
# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) OpenMMLab. All rights reserved.
from .overwrite_spconv.write_spconv2 import register_spconv2 from .compat_spconv2 import register_spconv2
try: try:
import spconv import spconv
......
# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) OpenMMLab. All rights reserved.
import pytest import pytest
import torch import torch
from mmcv.ops import (SparseConv3d, SparseConvTensor, SparseInverseConv3d,
SubMConv3d)
from mmdet3d.ops import SparseBasicBlock from mmdet3d.ops import SparseBasicBlock
from mmdet3d.ops.spconv import IS_SPCONV2_AVAILABLE
if IS_SPCONV2_AVAILABLE:
from spconv.pytorch import (SparseConv3d, SparseConvTensor,
SparseInverseConv3d, SubMConv3d)
else:
from mmcv.ops import (SparseConv3d, SparseConvTensor, SparseInverseConv3d,
SubMConv3d)
def test_SparseUNet(): def test_SparseUNet():
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment