Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
mmdetection3d
Commits
7bb011af
Commit
7bb011af
authored
Jun 06, 2022
by
VVsssssk
Committed by
ChaimZhu
Jul 20, 2022
Browse files
refactor kitti dataset cfg
parent
de58f9ee
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
68 additions
and
84 deletions
+68
-84
configs/_base_/datasets/kitti-3d-3class.py
configs/_base_/datasets/kitti-3d-3class.py
+34
-43
configs/_base_/datasets/kitti-3d-car.py
configs/_base_/datasets/kitti-3d-car.py
+34
-41
No files found.
configs/_base_/datasets/kitti-3d-3class.py
View file @
7bb011af
...
@@ -4,6 +4,7 @@ data_root = 'data/kitti/'
...
@@ -4,6 +4,7 @@ data_root = 'data/kitti/'
class_names
=
[
'Pedestrian'
,
'Cyclist'
,
'Car'
]
class_names
=
[
'Pedestrian'
,
'Cyclist'
,
'Car'
]
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
input_modality
=
dict
(
use_lidar
=
True
,
use_camera
=
False
)
input_modality
=
dict
(
use_lidar
=
True
,
use_camera
=
False
)
metainfo
=
dict
(
CLASSES
=
class_names
)
db_sampler
=
dict
(
db_sampler
=
dict
(
data_root
=
data_root
,
data_root
=
data_root
,
info_path
=
data_root
+
'kitti_dbinfos_train.pkl'
,
info_path
=
data_root
+
'kitti_dbinfos_train.pkl'
,
...
@@ -13,14 +14,12 @@ db_sampler = dict(
...
@@ -13,14 +14,12 @@ db_sampler = dict(
filter_by_min_points
=
dict
(
Car
=
5
,
Pedestrian
=
10
,
Cyclist
=
10
)),
filter_by_min_points
=
dict
(
Car
=
5
,
Pedestrian
=
10
,
Cyclist
=
10
)),
classes
=
class_names
,
classes
=
class_names
,
sample_groups
=
dict
(
Car
=
12
,
Pedestrian
=
6
,
Cyclist
=
6
))
sample_groups
=
dict
(
Car
=
12
,
Pedestrian
=
6
,
Cyclist
=
6
))
file_client_args
=
dict
(
backend
=
'disk'
)
file_client_args
=
dict
(
backend
=
'disk'
)
# Uncomment the following if use ceph or other file clients.
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# for more details.
# file_client_args = dict(
# file_client_args = dict(
# backend='petrel', path_mapping=dict(data='s3://kitti_data/'))
# backend='petrel', path_mapping=dict(data='s3://kitti_data/'))
train_pipeline
=
[
train_pipeline
=
[
dict
(
dict
(
type
=
'LoadPointsFromFile'
,
type
=
'LoadPointsFromFile'
,
...
@@ -48,8 +47,9 @@ train_pipeline = [
...
@@ -48,8 +47,9 @@ train_pipeline = [
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'PointShuffle'
),
dict
(
type
=
'PointShuffle'
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
),
dict
(
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
])
type
=
'Pack3DDetInputs'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
])
]
]
test_pipeline
=
[
test_pipeline
=
[
dict
(
dict
(
...
@@ -72,11 +72,7 @@ test_pipeline = [
...
@@ -72,11 +72,7 @@ test_pipeline = [
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'RandomFlip3D'
),
dict
(
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
dict
(
type
=
'Pack3DDetInputs'
,
keys
=
[
'points'
]),
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
])
])
]
]
# construct a pipeline for data and gt loading in show function
# construct a pipeline for data and gt loading in show function
...
@@ -88,53 +84,48 @@ eval_pipeline = [
...
@@ -88,53 +84,48 @@ eval_pipeline = [
load_dim
=
4
,
load_dim
=
4
,
use_dim
=
4
,
use_dim
=
4
,
file_client_args
=
file_client_args
),
file_client_args
=
file_client_args
),
dict
(
dict
(
type
=
'Pack3DDetInputs'
,
keys
=
[
'points'
]),
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
]
]
train_dataloader
=
dict
(
data
=
dict
(
batch_size
=
2
,
samples_per_gpu
=
6
,
num_workers
=
2
,
workers_per_gpu
=
4
,
persistent_workers
=
True
,
train
=
dict
(
sampler
=
dict
(
type
=
'DefaultSampler'
,
shuffle
=
True
),
dataset
=
dict
(
type
=
'RepeatDataset'
,
type
=
'RepeatDataset'
,
times
=
2
,
times
=
2
,
dataset
=
dict
(
dataset
=
dict
(
type
=
dataset_type
,
type
=
dataset_type
,
data_root
=
data_root
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_train.pkl'
,
ann_file
=
'kitti_infos_train.pkl'
,
split
=
'training'
,
data_prefix
=
dict
(
pts
=
'training/velodyne_reduced'
),
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
train_pipeline
,
pipeline
=
train_pipeline
,
modality
=
input_modality
,
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
False
,
test_mode
=
False
,
metainfo
=
metainfo
,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d
=
'LiDAR'
)),
box_type_3d
=
'LiDAR'
)))
val
=
dict
(
val_dataloader
=
dict
(
type
=
dataset_type
,
batch_size
=
1
,
data_root
=
data_root
,
num_workers
=
1
,
ann_file
=
data_root
+
'kitti_infos_val.pkl'
,
persistent_workers
=
True
,
split
=
'training'
,
drop_last
=
False
,
pts_prefix
=
'velodyne_reduced'
,
sampler
=
dict
(
type
=
'DefaultSampler'
,
shuffle
=
False
),
pipeline
=
test_pipeline
,
dataset
=
dict
(
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
True
,
box_type_3d
=
'LiDAR'
),
test
=
dict
(
type
=
dataset_type
,
type
=
dataset_type
,
data_root
=
data_root
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_val.pkl'
,
data_prefix
=
dict
(
pts
=
'training/velodyne_reduced'
),
split
=
'training'
,
ann_file
=
'kitti_infos_val.pkl'
,
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
eval_pipeline
,
pipeline
=
test_pipeline
,
modality
=
input_modality
,
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
True
,
test_mode
=
True
,
metainfo
=
metainfo
,
box_type_3d
=
'LiDAR'
))
box_type_3d
=
'LiDAR'
))
test_dataloader
=
val_dataloader
evaluation
=
dict
(
interval
=
1
,
pipeline
=
eval_pipeline
)
test_dataloader
=
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
))
val_evaluator
=
dict
(
type
=
'KittiMetric'
,
ann_file
=
data_root
+
'kitti_infos_val.pkl'
,
metric
=
'bbox'
)
test_evaluator
=
val_evaluator
configs/_base_/datasets/kitti-3d-car.py
View file @
7bb011af
...
@@ -4,6 +4,7 @@ data_root = 'data/kitti/'
...
@@ -4,6 +4,7 @@ data_root = 'data/kitti/'
class_names
=
[
'Car'
]
class_names
=
[
'Car'
]
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
point_cloud_range
=
[
0
,
-
40
,
-
3
,
70.4
,
40
,
1
]
input_modality
=
dict
(
use_lidar
=
True
,
use_camera
=
False
)
input_modality
=
dict
(
use_lidar
=
True
,
use_camera
=
False
)
metainfo
=
dict
(
CLASSES
=
class_names
)
db_sampler
=
dict
(
db_sampler
=
dict
(
data_root
=
data_root
,
data_root
=
data_root
,
info_path
=
data_root
+
'kitti_dbinfos_train.pkl'
,
info_path
=
data_root
+
'kitti_dbinfos_train.pkl'
,
...
@@ -11,14 +12,12 @@ db_sampler = dict(
...
@@ -11,14 +12,12 @@ db_sampler = dict(
prepare
=
dict
(
filter_by_difficulty
=
[
-
1
],
filter_by_min_points
=
dict
(
Car
=
5
)),
prepare
=
dict
(
filter_by_difficulty
=
[
-
1
],
filter_by_min_points
=
dict
(
Car
=
5
)),
classes
=
class_names
,
classes
=
class_names
,
sample_groups
=
dict
(
Car
=
15
))
sample_groups
=
dict
(
Car
=
15
))
file_client_args
=
dict
(
backend
=
'disk'
)
file_client_args
=
dict
(
backend
=
'disk'
)
# Uncomment the following if use ceph or other file clients.
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# for more details.
# file_client_args = dict(
# file_client_args = dict(
# backend='petrel', path_mapping=dict(data='s3://kitti_data/'))
# backend='petrel', path_mapping=dict(data='s3://kitti_data/'))
train_pipeline
=
[
train_pipeline
=
[
dict
(
dict
(
type
=
'LoadPointsFromFile'
,
type
=
'LoadPointsFromFile'
,
...
@@ -46,8 +45,9 @@ train_pipeline = [
...
@@ -46,8 +45,9 @@ train_pipeline = [
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'ObjectRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
type
=
'PointShuffle'
),
dict
(
type
=
'PointShuffle'
),
dict
(
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
),
dict
(
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
])
type
=
'Pack3DDetInputs'
,
keys
=
[
'points'
,
'gt_bboxes_3d'
,
'gt_labels_3d'
])
]
]
test_pipeline
=
[
test_pipeline
=
[
dict
(
dict
(
...
@@ -70,11 +70,7 @@ test_pipeline = [
...
@@ -70,11 +70,7 @@ test_pipeline = [
dict
(
type
=
'RandomFlip3D'
),
dict
(
type
=
'RandomFlip3D'
),
dict
(
dict
(
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
type
=
'PointsRangeFilter'
,
point_cloud_range
=
point_cloud_range
),
dict
(
dict
(
type
=
'Pack3DDetInputs'
,
keys
=
[
'points'
]),
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
])
])
]
]
# construct a pipeline for data and gt loading in show function
# construct a pipeline for data and gt loading in show function
...
@@ -86,53 +82,50 @@ eval_pipeline = [
...
@@ -86,53 +82,50 @@ eval_pipeline = [
load_dim
=
4
,
load_dim
=
4
,
use_dim
=
4
,
use_dim
=
4
,
file_client_args
=
file_client_args
),
file_client_args
=
file_client_args
),
dict
(
dict
(
type
=
'Pack3DDetInputs'
,
keys
=
[
'points'
]),
type
=
'DefaultFormatBundle3D'
,
class_names
=
class_names
,
with_label
=
False
),
dict
(
type
=
'Collect3D'
,
keys
=
[
'points'
])
]
]
train_dataloader
=
dict
(
data
=
dict
(
batch_size
=
2
,
samples_per_gpu
=
6
,
num_workers
=
2
,
workers_per_gpu
=
4
,
persistent_workers
=
True
,
train
=
dict
(
sampler
=
dict
(
type
=
'DefaultSampler'
,
shuffle
=
True
),
dataset
=
dict
(
type
=
'RepeatDataset'
,
type
=
'RepeatDataset'
,
times
=
2
,
times
=
2
,
dataset
=
dict
(
dataset
=
dict
(
type
=
dataset_type
,
type
=
dataset_type
,
data_root
=
data_root
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_train.pkl'
,
ann_file
=
'kitti_infos_train.pkl'
,
split
=
'training'
,
data_prefix
=
dict
(
pts
=
'training/velodyne_reduced'
),
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
train_pipeline
,
pipeline
=
train_pipeline
,
modality
=
input_modality
,
modality
=
input_modality
,
classes
=
class_names
,
classes
=
class_names
,
test_mode
=
False
,
test_mode
=
False
,
metainfo
=
metainfo
,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
# and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d
=
'LiDAR'
)),
box_type_3d
=
'LiDAR'
)))
val
=
dict
(
val_dataloader
=
dict
(
type
=
dataset_type
,
batch_size
=
1
,
data_root
=
data_root
,
num_workers
=
1
,
ann_file
=
data_root
+
'kitti_infos_val.pkl'
,
persistent_workers
=
True
,
split
=
'training'
,
drop_last
=
False
,
pts_prefix
=
'velodyne_reduced'
,
sampler
=
dict
(
type
=
'DefaultSampler'
,
shuffle
=
False
),
pipeline
=
test_pipeline
,
dataset
=
dict
(
modality
=
input_modality
,
classes
=
class_names
,
test_mode
=
True
,
box_type_3d
=
'LiDAR'
),
test
=
dict
(
type
=
dataset_type
,
type
=
dataset_type
,
data_root
=
data_root
,
data_root
=
data_root
,
ann_file
=
data_root
+
'kitti_infos_val.pkl'
,
data_prefix
=
dict
(
pts
=
'training/velodyne_reduced'
),
split
=
'training'
,
ann_file
=
'kitti_infos_val.pkl'
,
pts_prefix
=
'velodyne_reduced'
,
pipeline
=
eval_pipeline
,
pipeline
=
test_pipeline
,
modality
=
input_modality
,
modality
=
input_modality
,
classes
=
class_names
,
classes
=
class_names
,
test_mode
=
True
,
test_mode
=
True
,
metainfo
=
metainfo
,
box_type_3d
=
'LiDAR'
))
box_type_3d
=
'LiDAR'
))
test_dataloader
=
val_dataloader
evaluation
=
dict
(
interval
=
1
,
pipeline
=
eval_pipeline
)
test_dataloader
=
dict
(
dataset
=
dict
(
pipeline
=
test_pipeline
))
val_evaluator
=
dict
(
type
=
'KittiMetric'
,
ann_file
=
data_root
+
'kitti_infos_val.pkl'
,
metric
=
'bbox'
)
test_evaluator
=
val_evaluator
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment