Commit 71707334 authored by WRH's avatar WRH Committed by ZwwWayne
Browse files

Fix np.long for windows (#1270)

* change np.long to np.int64

* change all log to int64
parent 145e592e
......@@ -134,10 +134,10 @@ class MyDataset(Custom3DDataset):
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
np.float32) # k, 6
gt_labels_3d = info['annos']['class'].astype(np.long)
gt_labels_3d = info['annos']['class'].astype(np.int64)
else:
gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
gt_labels_3d = np.zeros((0, ), dtype=np.long)
gt_labels_3d = np.zeros((0, ), dtype=np.int64)
# to target box structure
gt_bboxes_3d = DepthInstance3DBoxes(
......
......@@ -130,10 +130,10 @@ class MyDataset(Custom3DDataset):
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
np.float32) # k, 6
gt_labels_3d = info['annos']['class'].astype(np.long)
gt_labels_3d = info['annos']['class'].astype(np.int64)
else:
gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
gt_labels_3d = np.zeros((0, ), dtype=np.long)
gt_labels_3d = np.zeros((0, ), dtype=np.int64)
# 转换为目标标注框的结构
gt_bboxes_3d = DepthInstance3DBoxes(
......
......@@ -604,7 +604,7 @@ class LoadAnnotations3D(LoadAnnotations):
except ConnectionError:
mmcv.check_file_exist(pts_instance_mask_path)
pts_instance_mask = np.fromfile(
pts_instance_mask_path, dtype=np.long)
pts_instance_mask_path, dtype=np.int64)
results['pts_instance_mask'] = pts_instance_mask
results['pts_mask_fields'].append('pts_instance_mask')
......@@ -631,7 +631,7 @@ class LoadAnnotations3D(LoadAnnotations):
except ConnectionError:
mmcv.check_file_exist(pts_semantic_mask_path)
pts_semantic_mask = np.fromfile(
pts_semantic_mask_path, dtype=np.long)
pts_semantic_mask_path, dtype=np.int64)
results['pts_semantic_mask'] = pts_semantic_mask
results['pts_seg_fields'].append('pts_semantic_mask')
......
......@@ -356,7 +356,7 @@ class ObjectSample(object):
input_dict['img'] = sampled_dict['img']
input_dict['gt_bboxes_3d'] = gt_bboxes_3d
input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.long)
input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.int64)
input_dict['points'] = points
return input_dict
......
......@@ -85,10 +85,10 @@ class S3DISDataset(Custom3DDataset):
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
np.float32) # k, 6
gt_labels_3d = info['annos']['class'].astype(np.long)
gt_labels_3d = info['annos']['class'].astype(np.int64)
else:
gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
gt_labels_3d = np.zeros((0, ), dtype=np.long)
gt_labels_3d = np.zeros((0, ), dtype=np.int64)
# to target box structure
gt_bboxes_3d = DepthInstance3DBoxes(
......
......@@ -143,10 +143,10 @@ class ScanNetDataset(Custom3DDataset):
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
np.float32) # k, 6
gt_labels_3d = info['annos']['class'].astype(np.long)
gt_labels_3d = info['annos']['class'].astype(np.int64)
else:
gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
gt_labels_3d = np.zeros((0, ), dtype=np.long)
gt_labels_3d = np.zeros((0, ), dtype=np.int64)
# to target box structure
gt_bboxes_3d = DepthInstance3DBoxes(
......
......@@ -137,10 +137,10 @@ class SUNRGBDDataset(Custom3DDataset):
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
np.float32) # k, 6
gt_labels_3d = info['annos']['class'].astype(np.long)
gt_labels_3d = info['annos']['class'].astype(np.int64)
else:
gt_bboxes_3d = np.zeros((0, 7), dtype=np.float32)
gt_labels_3d = np.zeros((0, ), dtype=np.long)
gt_labels_3d = np.zeros((0, ), dtype=np.int64)
# to target box structure
gt_bboxes_3d = DepthInstance3DBoxes(
......
......@@ -88,7 +88,7 @@ def test_object_sample():
gt_labels.append(CLASSES.index(cat))
else:
gt_labels.append(-1)
gt_labels = np.array(gt_labels, dtype=np.long)
gt_labels = np.array(gt_labels, dtype=np.int64)
points = LiDARPoints(points, points_dim=4)
input_dict = dict(
points=points, gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels)
......@@ -176,7 +176,7 @@ def test_object_name_filter():
gt_labels.append(CLASSES.index(cat))
else:
gt_labels.append(-1)
gt_labels = np.array(gt_labels, dtype=np.long)
gt_labels = np.array(gt_labels, dtype=np.int64)
input_dict = dict(
gt_bboxes_3d=gt_bboxes_3d.clone(), gt_labels_3d=gt_labels.copy())
......@@ -200,9 +200,9 @@ def test_point_shuffle():
points = np.fromfile('tests/data/scannet/points/scene0000_00.bin',
np.float32).reshape(-1, 6)
ins_mask = np.fromfile('tests/data/scannet/instance_mask/scene0000_00.bin',
np.long)
np.int64)
sem_mask = np.fromfile('tests/data/scannet/semantic_mask/scene0000_00.bin',
np.long)
np.int64)
points = DepthPoints(
points.copy(), points_dim=6, attribute_dims=dict(color=[3, 4, 5]))
......@@ -244,9 +244,9 @@ def test_points_range_filter():
points = np.fromfile('tests/data/scannet/points/scene0000_00.bin',
np.float32).reshape(-1, 6)
ins_mask = np.fromfile('tests/data/scannet/instance_mask/scene0000_00.bin',
np.long)
np.int64)
sem_mask = np.fromfile('tests/data/scannet/semantic_mask/scene0000_00.bin',
np.long)
np.int64)
points = DepthPoints(
points.copy(), points_dim=6, attribute_dims=dict(color=[3, 4, 5]))
......@@ -286,7 +286,7 @@ def test_object_range_filter():
[18.7314, -18.559, 20.6547, 6.4800, 8.6000, 3.9200, -1.0100],
[3.7314, 42.559, -0.6547, 6.4800, 8.6000, 2.9200, 3.0100]])
gt_bboxes_3d = LiDARInstance3DBoxes(bbox, origin=(0.5, 0.5, 0.5))
gt_labels_3d = np.array([0, 2, 1, 1, 2, 0], dtype=np.long)
gt_labels_3d = np.array([0, 2, 1, 1, 2, 0], dtype=np.int64)
input_dict = dict(
gt_bboxes_3d=gt_bboxes_3d.clone(), gt_labels_3d=gt_labels_3d.copy())
......
......@@ -61,10 +61,10 @@ def test_scannet_pipeline():
if info['annos']['gt_num'] != 0:
scannet_gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
np.float32)
scannet_gt_labels_3d = info['annos']['class'].astype(np.long)
scannet_gt_labels_3d = info['annos']['class'].astype(np.int64)
else:
scannet_gt_bboxes_3d = np.zeros((1, 6), dtype=np.float32)
scannet_gt_labels_3d = np.zeros((1, ), dtype=np.long)
scannet_gt_labels_3d = np.zeros((1, ), dtype=np.int64)
results['ann_info'] = dict()
results['ann_info']['pts_instance_mask_path'] = osp.join(
data_path, info['pts_instance_mask_path'])
......@@ -294,10 +294,10 @@ def test_sunrgbd_pipeline():
if info['annos']['gt_num'] != 0:
gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
np.float32)
gt_labels_3d = info['annos']['class'].astype(np.long)
gt_labels_3d = info['annos']['class'].astype(np.int64)
else:
gt_bboxes_3d = np.zeros((1, 7), dtype=np.float32)
gt_labels_3d = np.zeros((1, ), dtype=np.long)
gt_labels_3d = np.zeros((1, ), dtype=np.int64)
# prepare input of pipeline
results['ann_info'] = dict()
......
......@@ -82,7 +82,7 @@ def test_indoor_seg_sample():
scannet_points, points_dim=6, attribute_dims=dict(color=[3, 4, 5]))
scannet_pts_semantic_mask = np.fromfile(
'./tests/data/scannet/semantic_mask/scene0000_00.bin', dtype=np.long)
'./tests/data/scannet/semantic_mask/scene0000_00.bin', dtype=np.int64)
scannet_results['pts_semantic_mask'] = scannet_pts_semantic_mask
scannet_results = scannet_seg_class_mapping(scannet_results)
......@@ -174,7 +174,7 @@ def test_indoor_seg_sample():
s3dis_points, points_dim=6, attribute_dims=dict(color=[3, 4, 5]))
s3dis_pts_semantic_mask = np.fromfile(
'./tests/data/s3dis/semantic_mask/Area_1_office_2.bin', dtype=np.long)
'./tests/data/s3dis/semantic_mask/Area_1_office_2.bin', dtype=np.int64)
s3dis_results['pts_semantic_mask'] = s3dis_pts_semantic_mask
s3dis_results = s3dis_patch_sample_points(s3dis_results)
......
......@@ -208,7 +208,7 @@ class S3DISSegData(object):
if mask.endswith('npy'):
mask = np.load(mask)
else:
mask = np.fromfile(mask, dtype=np.long)
mask = np.fromfile(mask, dtype=np.int64)
label = self.cat_id2class[mask]
return label
......
......@@ -138,9 +138,9 @@ class ScanNetData(object):
f'{sample_idx}_sem_label.npy')
pts_instance_mask = np.load(pts_instance_mask_path).astype(
np.long)
np.int64)
pts_semantic_mask = np.load(pts_semantic_mask_path).astype(
np.long)
np.int64)
mmcv.mkdir_or_exist(osp.join(self.root_dir, 'instance_mask'))
mmcv.mkdir_or_exist(osp.join(self.root_dir, 'semantic_mask'))
......@@ -260,7 +260,7 @@ class ScanNetSegData(object):
if mask.endswith('npy'):
mask = np.load(mask)
else:
mask = np.fromfile(mask, dtype=np.long)
mask = np.fromfile(mask, dtype=np.int64)
label = self.cat_id2class[mask]
return label
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment