Commit 4f543f41 authored by zhangwenwei's avatar zhangwenwei
Browse files

Use file client

parent f387f7b9
# model settings
voxel_size = [0.25, 0.25, 8]
point_cloud_range = [-50, -50, -5, 50, 50, 3]
class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
model = dict(
type='MVXFasterRCNNV2',
pts_voxel_layer=dict(
max_num_points=64, # max_points_per_voxel
point_cloud_range=point_cloud_range, # velodyne coordinates, x, y, z
voxel_size=voxel_size,
max_voxels=(30000, 40000), # (training, testing) max_coxels
),
pts_voxel_encoder=dict(
type='HardVFE',
num_input_features=4,
num_filters=[64, 64],
with_distance=False,
voxel_size=voxel_size,
with_cluster_center=True,
with_voxel_center=True,
point_cloud_range=point_cloud_range,
norm_cfg=dict(type='naiveSyncBN1d', eps=1e-3, momentum=0.01)),
pts_middle_encoder=dict(
type='PointPillarsScatter',
in_channels=64,
output_shape=[400, 400], # checked from PointCloud3D
),
pts_backbone=dict(
type='SECOND',
in_channels=64,
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
layer_nums=[3, 5, 5],
layer_strides=[2, 2, 2],
out_channels=[64, 128, 256],
),
pts_neck=dict(
type='SECONDFPN',
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
in_channels=[64, 128, 256],
upsample_strides=[1, 2, 4],
out_channels=[128, 128, 128],
),
pts_bbox_head=dict(
type='Anchor3DHead',
num_classes=10,
in_channels=384,
feat_channels=384,
use_direction_classifier=True,
anchor_generator=dict(
type='Anchor3DRangeGenerator',
ranges=[
[-49.6, -49.6, -1.80032795, 49.6, 49.6, -1.80032795],
[-49.6, -49.6, -1.74440365, 49.6, 49.6, -1.74440365],
[-49.6, -49.6, -1.68526504, 49.6, 49.6, -1.68526504],
[-49.6, -49.6, -1.67339111, 49.6, 49.6, -1.67339111],
[-49.6, -49.6, -1.61785072, 49.6, 49.6, -1.61785072],
[-49.6, -49.6, -1.80984986, 49.6, 49.6, -1.80984986],
[-49.6, -49.6, -1.763965, 49.6, 49.6, -1.763965],
],
sizes=[
[1.95017717, 4.60718145, 1.72270761], # car
[2.4560939, 6.73778078, 2.73004906], # truck
[2.87427237, 12.01320693, 3.81509561], # trailer
[0.60058911, 1.68452161, 1.27192197], # bicycle
[0.66344886, 0.7256437, 1.75748069], # pedestrian
[0.39694519, 0.40359262, 1.06232151], # traffic_cone
[2.49008838, 0.48578221, 0.98297065], # barrier
],
custom_values=[0, 0],
rotations=[0, 1.57],
reshape_out=True),
assigner_per_size=False,
diff_rad_by_sin=True,
dir_offset=0.7854, # pi/4
dir_limit_offset=0,
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=9),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)))
# model training and testing settings
train_cfg = dict(
pts=dict(
assigner=dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
allowed_border=0,
code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2],
pos_weight=-1,
debug=False))
test_cfg = dict(
pts=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_pre=1000,
nms_thr=0.2,
score_thr=0.05,
min_bbox_size=0,
max_num=500
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
))
# dataset settings
dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
input_modality = dict(
use_lidar=True,
use_depth=False,
use_lidar_intensity=True,
use_camera=False,
)
db_sampler = dict(
data_root=data_root,
info_path=data_root + 'nuscenes_dbinfos_train.pkl',
rate=1.0,
object_rot_range=[0.0, 0.0],
prepare=dict(),
classes=class_names,
sample_groups=dict(
bus=4,
trailer=4,
truck=4,
))
file_client_args = dict(
backend='petrel',
path_mapping=dict({
'./data/nuscenes/': 's3://nuscenes/nuscenes/',
'data/nuscenes/': 's3://nuscenes/nuscenes/'
}))
train_pipeline = [
dict(
type='LoadPointsFromFile',
load_dim=5,
use_dim=5,
file_client_args=file_client_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
file_client_args=file_client_args),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(
type='GlobalRotScale',
rot_uniform_noise=[-0.3925, 0.3925],
scaling_uniform_noise=[0.95, 1.05],
trans_normal_noise=[0, 0, 0]),
dict(type='RandomFlip3D', flip_ratio=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']),
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
load_dim=5,
use_dim=5,
file_client_args=file_client_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
file_client_args=file_client_args),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='RandomFlip3D', flip_ratio=0),
dict(
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points']),
]
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'nuscenes_infos_train.pkl',
pipeline=train_pipeline,
modality=input_modality,
classes=class_names,
test_mode=False),
val=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'nuscenes_infos_val.pkl',
pipeline=test_pipeline,
modality=input_modality,
classes=class_names,
test_mode=True),
test=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'nuscenes_infos_val.pkl',
pipeline=test_pipeline,
modality=input_modality,
classes=class_names,
test_mode=True))
# optimizer
optimizer = dict(type='AdamW', lr=0.001, weight_decay=0.01)
# max_norm=10 is better for SECOND
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=1000,
warmup_ratio=1.0 / 1000,
step=[20, 23])
momentum_config = None
checkpoint_config = dict(interval=1)
# yapf:disable
evaluation = dict(interval=24)
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 24
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d'
load_from = None
resume_from = None
workflow = [('train', 1)]
# model settings
voxel_size = [0.05, 0.05, 0.1]
point_cloud_range = [0, -40, -3, 70.4, 40, 1] # velodyne coordinates, x, y, z
model = dict(
type='VoxelNet',
voxel_layer=dict(
max_num_points=5, # max_points_per_voxel
point_cloud_range=point_cloud_range,
voxel_size=voxel_size,
max_voxels=(16000, 40000), # (training, testing) max_coxels
),
voxel_encoder=dict(
type='VoxelFeatureExtractorV3',
num_input_features=4,
num_filters=[4],
with_distance=False),
middle_encoder=dict(
type='SparseEncoder',
in_channels=4,
sparse_shape=[41, 1600, 1408],
order=('conv', 'norm', 'act')),
backbone=dict(
type='SECOND',
in_channels=256,
layer_nums=[5, 5],
layer_strides=[1, 2],
out_channels=[128, 256],
),
neck=dict(
type='SECONDFPN',
in_channels=[128, 256],
upsample_strides=[1, 2],
out_channels=[256, 256],
),
bbox_head=dict(
type='Anchor3DHead',
num_classes=1,
in_channels=512,
feat_channels=512,
use_direction_classifier=True,
anchor_generator=dict(
type='Anchor3DRangeGenerator',
ranges=[[0, -40.0, -1.78, 70.4, 40.0, -1.78]],
sizes=[[1.6, 3.9, 1.56]],
rotations=[0, 1.57],
reshape_out=True),
diff_rad_by_sin=True,
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2),
),
)
# model training and testing settings
train_cfg = dict(
assigner=dict(
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
allowed_border=0,
pos_weight=-1,
debug=False)
test_cfg = dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.3,
min_bbox_size=0,
nms_pre=100,
max_num=50)
# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Car']
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
input_modality = dict(
use_lidar=False,
use_lidar_reduced=True,
use_depth=False,
use_lidar_intensity=True,
use_camera=False,
)
db_sampler = dict(
data_root=data_root,
info_path=data_root + 'kitti_dbinfos_train.pkl',
rate=1.0,
object_rot_range=[0.0, 0.0],
prepare=dict(
filter_by_difficulty=[-1],
filter_by_min_points=dict(Car=5),
),
classes=class_names,
sample_groups=dict(Car=15),
)
file_client_args = dict(
backend='petrel', path_mapping=dict(data='s3://kitti_data/'))
train_pipeline = [
dict(
type='LoadPointsFromFile',
load_dim=4,
use_dim=4,
file_client_args=file_client_args),
dict(
type='LoadAnnotations3D',
with_bbox_3d=True,
with_label_3d=True,
file_client_args=file_client_args),
dict(type='ObjectSample', db_sampler=db_sampler),
dict(
type='ObjectNoise',
num_try=100,
loc_noise_std=[1.0, 1.0, 0.5],
global_rot_range=[0.0, 0.0],
rot_uniform_noise=[-0.78539816, 0.78539816]),
dict(type='RandomFlip3D', flip_ratio=0.5),
dict(
type='GlobalRotScale',
rot_uniform_noise=[-0.78539816, 0.78539816],
scaling_uniform_noise=[0.95, 1.05]),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']),
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
load_dim=4,
use_dim=4,
file_client_args=file_client_args),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points']),
]
data = dict(
samples_per_gpu=6,
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'kitti_infos_train.pkl',
split='training',
pts_prefix='velodyne_reduced',
pipeline=train_pipeline,
modality=input_modality,
classes=class_names,
test_mode=False),
val=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'kitti_infos_val.pkl',
split='training',
pts_prefix='velodyne_reduced',
pipeline=test_pipeline,
modality=input_modality,
classes=class_names,
test_mode=True),
test=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'kitti_infos_val.pkl',
split='training',
pts_prefix='velodyne_reduced',
pipeline=test_pipeline,
modality=input_modality,
classes=class_names,
test_mode=True))
# optimizer
lr = 0.0018 # max learning rate
optimizer = dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01)
optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2))
lr_config = dict(
policy='cyclic',
target_ratio=(10, 1e-4),
cyclic_times=1,
step_ratio_up=0.4,
)
momentum_config = dict(
policy='cyclic',
target_ratio=(0.85 / 0.95, 1),
cyclic_times=1,
step_ratio_up=0.4,
)
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 80
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/sec_secfpn_80e'
load_from = None
resume_from = None
workflow = [('train', 1)]
...@@ -8,8 +8,8 @@ from .loader import DistributedGroupSampler, GroupSampler, build_dataloader ...@@ -8,8 +8,8 @@ from .loader import DistributedGroupSampler, GroupSampler, build_dataloader
from .nuscenes_dataset import NuScenesDataset from .nuscenes_dataset import NuScenesDataset
from .pipelines import (GlobalRotScale, IndoorFlipData, IndoorGlobalRotScale, from .pipelines import (GlobalRotScale, IndoorFlipData, IndoorGlobalRotScale,
IndoorPointSample, IndoorPointsColorJitter, IndoorPointSample, IndoorPointsColorJitter,
IndoorPointsColorNormalize, LoadAnnotations3D, LoadAnnotations3D, LoadPointsFromFile,
LoadPointsFromFile, ObjectNoise, ObjectRangeFilter, NormalizePointsColor, ObjectNoise, ObjectRangeFilter,
ObjectSample, PointShuffle, PointsRangeFilter, ObjectSample, PointShuffle, PointsRangeFilter,
RandomFlip3D) RandomFlip3D)
from .scannet_dataset import ScanNetDataset from .scannet_dataset import ScanNetDataset
...@@ -21,7 +21,7 @@ __all__ = [ ...@@ -21,7 +21,7 @@ __all__ = [
'CocoDataset', 'Kitti2DDataset', 'NuScenesDataset', 'ObjectSample', 'CocoDataset', 'Kitti2DDataset', 'NuScenesDataset', 'ObjectSample',
'RandomFlip3D', 'ObjectNoise', 'GlobalRotScale', 'PointShuffle', 'RandomFlip3D', 'ObjectNoise', 'GlobalRotScale', 'PointShuffle',
'ObjectRangeFilter', 'PointsRangeFilter', 'Collect3D', 'ObjectRangeFilter', 'PointsRangeFilter', 'Collect3D',
'LoadPointsFromFile', 'IndoorPointsColorNormalize', 'IndoorPointSample', 'LoadPointsFromFile', 'NormalizePointsColor', 'IndoorPointSample',
'LoadAnnotations3D', 'IndoorPointsColorJitter', 'IndoorGlobalRotScale', 'LoadAnnotations3D', 'IndoorPointsColorJitter', 'IndoorGlobalRotScale',
'IndoorFlipData', 'SUNRGBDDataset', 'ScanNetDataset', 'Custom3DDataset' 'IndoorFlipData', 'SUNRGBDDataset', 'ScanNetDataset', 'Custom3DDataset'
] ]
...@@ -3,8 +3,8 @@ from .dbsampler import DataBaseSampler, MMDataBaseSampler ...@@ -3,8 +3,8 @@ from .dbsampler import DataBaseSampler, MMDataBaseSampler
from .formating import DefaultFormatBundle, DefaultFormatBundle3D from .formating import DefaultFormatBundle, DefaultFormatBundle3D
from .indoor_augment import (IndoorFlipData, IndoorGlobalRotScale, from .indoor_augment import (IndoorFlipData, IndoorGlobalRotScale,
IndoorPointsColorJitter) IndoorPointsColorJitter)
from .indoor_loading import (IndoorPointsColorNormalize, LoadAnnotations3D, from .indoor_loading import (LoadAnnotations3D, LoadPointsFromFile,
LoadPointsFromFile) NormalizePointsColor)
from .indoor_sample import IndoorPointSample from .indoor_sample import IndoorPointSample
from .loading import LoadMultiViewImageFromFiles from .loading import LoadMultiViewImageFromFiles
from .train_aug import (GlobalRotScale, ObjectNoise, ObjectRangeFilter, from .train_aug import (GlobalRotScale, ObjectNoise, ObjectRangeFilter,
...@@ -17,6 +17,6 @@ __all__ = [ ...@@ -17,6 +17,6 @@ __all__ = [
'Compose', 'LoadMultiViewImageFromFiles', 'LoadPointsFromFile', 'Compose', 'LoadMultiViewImageFromFiles', 'LoadPointsFromFile',
'DefaultFormatBundle', 'DefaultFormatBundle3D', 'DataBaseSampler', 'DefaultFormatBundle', 'DefaultFormatBundle3D', 'DataBaseSampler',
'IndoorGlobalRotScale', 'IndoorPointsColorJitter', 'IndoorFlipData', 'IndoorGlobalRotScale', 'IndoorPointsColorJitter', 'IndoorFlipData',
'MMDataBaseSampler', 'IndoorPointsColorNormalize', 'LoadAnnotations3D', 'MMDataBaseSampler', 'NormalizePointsColor', 'LoadAnnotations3D',
'IndoorPointSample' 'IndoorPointSample'
] ]
...@@ -6,8 +6,8 @@ from mmdet.datasets.pipelines import LoadAnnotations ...@@ -6,8 +6,8 @@ from mmdet.datasets.pipelines import LoadAnnotations
@PIPELINES.register_module() @PIPELINES.register_module()
class IndoorPointsColorNormalize(object): class NormalizePointsColor(object):
"""Indoor points color normalize """Normalize color of points
Normalize color of the points. Normalize color of the points.
...@@ -45,9 +45,16 @@ class LoadPointsFromFile(object): ...@@ -45,9 +45,16 @@ class LoadPointsFromFile(object):
use_dim (list[int]): Which dimensions of the points to be used. use_dim (list[int]): Which dimensions of the points to be used.
Default: [0, 1, 2]. For KITTI dataset, set use_dim=4 Default: [0, 1, 2]. For KITTI dataset, set use_dim=4
or use_dim=[0, 1, 2, 3] to use the intensity dimension or use_dim=[0, 1, 2, 3] to use the intensity dimension
file_client_args (dict): Config dict of file clients, refer to
https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
for more details.
""" """
def __init__(self, load_dim=6, use_dim=[0, 1, 2], shift_height=False): def __init__(self,
load_dim=6,
use_dim=[0, 1, 2],
shift_height=False,
file_client_args=dict(backend='disk')):
self.shift_height = shift_height self.shift_height = shift_height
if isinstance(use_dim, int): if isinstance(use_dim, int):
use_dim = list(range(use_dim)) use_dim = list(range(use_dim))
...@@ -56,8 +63,16 @@ class LoadPointsFromFile(object): ...@@ -56,8 +63,16 @@ class LoadPointsFromFile(object):
self.load_dim = load_dim self.load_dim = load_dim
self.use_dim = use_dim self.use_dim = use_dim
self.file_client_args = file_client_args.copy()
self.file_client = None
def _load_points(self, pts_filename): def _load_points(self, pts_filename):
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
try:
pts_bytes = self.file_client.get(pts_filename)
points = np.frombuffer(pts_bytes, dtype=np.float32)
except ConnectionError:
mmcv.check_file_exist(pts_filename) mmcv.check_file_exist(pts_filename)
if pts_filename.endswith('.npy'): if pts_filename.endswith('.npy'):
points = np.load(pts_filename) points = np.load(pts_filename)
...@@ -113,6 +128,9 @@ class LoadAnnotations3D(LoadAnnotations): ...@@ -113,6 +128,9 @@ class LoadAnnotations3D(LoadAnnotations):
Defaults to False. Defaults to False.
poly2mask (bool, optional): Whether to convert polygon annotations poly2mask (bool, optional): Whether to convert polygon annotations
to bitmasks. Defaults to True. to bitmasks. Defaults to True.
file_client_args (dict): Config dict of file clients, refer to
https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
for more details.
""" """
def __init__(self, def __init__(self,
...@@ -124,8 +142,15 @@ class LoadAnnotations3D(LoadAnnotations): ...@@ -124,8 +142,15 @@ class LoadAnnotations3D(LoadAnnotations):
with_label=False, with_label=False,
with_mask=False, with_mask=False,
with_seg=False, with_seg=False,
poly2mask=True): poly2mask=True,
super().__init__(with_bbox, with_label, with_mask, with_seg, poly2mask) file_client_args=dict(backend='disk')):
super().__init__(
with_bbox,
with_label,
with_mask,
with_seg,
poly2mask,
file_client_args=file_client_args)
self.with_bbox_3d = with_bbox_3d self.with_bbox_3d = with_bbox_3d
self.with_label_3d = with_label_3d self.with_label_3d = with_label_3d
self.with_mask_3d = with_mask_3d self.with_mask_3d = with_mask_3d
...@@ -142,16 +167,34 @@ class LoadAnnotations3D(LoadAnnotations): ...@@ -142,16 +167,34 @@ class LoadAnnotations3D(LoadAnnotations):
def _load_masks_3d(self, results): def _load_masks_3d(self, results):
pts_instance_mask_path = results['ann_info']['pts_instance_mask_path'] pts_instance_mask_path = results['ann_info']['pts_instance_mask_path']
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
try:
mask_bytes = self.file_client.get(pts_instance_mask_path)
pts_instance_mask = np.frombuffer(mask_bytes, dtype=np.int)
except ConnectionError:
mmcv.check_file_exist(pts_instance_mask_path) mmcv.check_file_exist(pts_instance_mask_path)
pts_instance_mask = np.fromfile(pts_instance_mask_path, dtype=np.long) pts_instance_mask = np.fromfile(
pts_instance_mask_path, dtype=np.long)
results['pts_instance_mask'] = pts_instance_mask results['pts_instance_mask'] = pts_instance_mask
results['pts_mask_fields'].append(results['pts_instance_mask']) results['pts_mask_fields'].append(results['pts_instance_mask'])
return results return results
def _load_semantic_seg_3d(self, results): def _load_semantic_seg_3d(self, results):
pts_semantic_mask_path = results['ann_info']['pts_semantic_mask_path'] pts_semantic_mask_path = results['ann_info']['pts_semantic_mask_path']
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
try:
mask_bytes = self.file_client.get(pts_semantic_mask_path)
pts_semantic_mask = np.frombuffer(mask_bytes, dtype=np.int)
except ConnectionError:
mmcv.check_file_exist(pts_semantic_mask_path) mmcv.check_file_exist(pts_semantic_mask_path)
pts_semantic_mask = np.fromfile(pts_semantic_mask_path, dtype=np.long) pts_semantic_mask = np.fromfile(
pts_semantic_mask_path, dtype=np.long)
results['pts_semantic_mask'] = pts_semantic_mask results['pts_semantic_mask'] = pts_semantic_mask
results['pts_seg_fields'].append(results['pts_semantic_mask']) results['pts_seg_fields'].append(results['pts_semantic_mask'])
return results return results
......
...@@ -42,9 +42,40 @@ class LoadMultiViewImageFromFiles(object): ...@@ -42,9 +42,40 @@ class LoadMultiViewImageFromFiles(object):
@PIPELINES.register_module() @PIPELINES.register_module()
class LoadPointsFromMultiSweeps(object): class LoadPointsFromMultiSweeps(object):
"""Load points from multiple sweeps
def __init__(self, sweeps_num=10): This is usually used for nuScenes dataset to utilize previous sweeps.
Args:
sweeps_num (int): number of sweeps
load_dim (int): dimension number of the loaded points
file_client_args (dict): Config dict of file clients, refer to
https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
for more details.
"""
def __init__(self,
sweeps_num=10,
load_dim=5,
file_client_args=dict(backend='disk')):
self.load_dim = load_dim
self.sweeps_num = sweeps_num self.sweeps_num = sweeps_num
self.file_client_args = file_client_args.copy()
self.file_client = None
def _load_points(self, pts_filename):
if self.file_client is None:
self.file_client = mmcv.FileClient(**self.file_client_args)
try:
pts_bytes = self.file_client.get(pts_filename)
points = np.frombuffer(pts_bytes, dtype=np.float32)
except ConnectionError:
mmcv.check_file_exist(pts_filename)
if pts_filename.endswith('.npy'):
points = np.load(pts_filename)
else:
points = np.fromfile(pts_filename, dtype=np.float32)
return points
def __call__(self, results): def __call__(self, results):
points = results['points'] points = results['points']
...@@ -56,9 +87,8 @@ class LoadPointsFromMultiSweeps(object): ...@@ -56,9 +87,8 @@ class LoadPointsFromMultiSweeps(object):
for idx, sweep in enumerate(results['sweeps']): for idx, sweep in enumerate(results['sweeps']):
if idx >= self.sweeps_num: if idx >= self.sweeps_num:
break break
points_sweep = np.fromfile( points_sweep = self._load_points(sweep['data_path'])
sweep['data_path'], dtype=np.float32, points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
count=-1).reshape([-1, 5])
sweep_ts = sweep['timestamp'] / 1e6 sweep_ts = sweep['timestamp'] / 1e6
points_sweep[:, 3] /= 255 points_sweep[:, 3] /= 255
points_sweep[:, :3] = points_sweep[:, :3] @ sweep[ points_sweep[:, :3] = points_sweep[:, :3] @ sweep[
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment