Unverified Commit 456b7403 authored by Xiang Xu's avatar Xiang Xu Committed by GitHub
Browse files

[Docs] Update README (#2599)

* update readme

* update readme

* update readme
parent 148a0856
...@@ -18,13 +18,27 @@ ...@@ -18,13 +18,27 @@
</div> </div>
<div>&nbsp;</div> <div>&nbsp;</div>
[![PyPI](https://img.shields.io/pypi/v/mmdet3d)](https://pypi.org/project/mmdet3d)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/en/latest/) [![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/en/latest/)
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions) [![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d) [![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/master/LICENSE) [![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/main/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues)
[📘Documentation](https://mmdetection3d.readthedocs.io/en/latest/) |
[🛠️Installation](https://mmdetection3d.readthedocs.io/en/latest/get_started.html) |
[👀Model Zoo](https://mmdetection3d.readthedocs.io/en/latest/model_zoo.html) |
[🆕Update News](https://mmdetection3d.readthedocs.io/en/latest/notes/changelog.html) |
[🚀Ongoing Projects](https://github.com/open-mmlab/mmdetection3d/projects) |
[🤔Reporting Issues](https://github.com/open-mmlab/mmdetection3d/issues/new/choose)
</div> </div>
<div align="center">
English | [简体中文](README_zh-CN.md)
</div> </div>
<div align="center"> <div align="center">
...@@ -47,27 +61,16 @@ ...@@ -47,27 +61,16 @@
<img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
</div> </div>
**News**:
**We have renamed the branch `1.1` to `main` and switched the default branch from `master` to `main`. We encourage
users to migrate to the latest version, though it comes with some cost. Please refer to [Migration Guide](docs/en/migration.md) for more details.**
**v1.1.1** was released in 30/5/2023
We have constructed a comprehensive LiDAR semantic segmentation benchmark on SemanticKITTI, including Cylinder3D, MinkUNet and SPVCNN methods. Noteworthy, the improved MinkUNetv2 can achieve 70.3 mIoU on the validation set of SemanticKITTI. We have also supported the training of BEVFusion and an occupancy prediction method, TPVFomrer, in our `projects`. More new features about 3D perception are on the way. Please stay tuned!
## Introduction ## Introduction
English | [简体中文](README_zh-CN.md) MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the [OpenMMLab](https://openmmlab.com/) project.
The main branch works with **PyTorch 1.8+**. The main branch works with **PyTorch 1.8+**.
MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is
a part of the OpenMMLab project developed by [MMLab](http://mmlab.ie.cuhk.edu.hk/).
![demo image](resources/mmdet3d_outdoor_demo.gif) ![demo image](resources/mmdet3d_outdoor_demo.gif)
### Major features <details open>
<summary>Major features</summary>
- **Support multi-modality/single-modality detectors out of box** - **Support multi-modality/single-modality detectors out of box**
...@@ -75,8 +78,7 @@ a part of the OpenMMLab project developed by [MMLab](http://mmlab.ie.cuhk.edu.hk ...@@ -75,8 +78,7 @@ a part of the OpenMMLab project developed by [MMLab](http://mmlab.ie.cuhk.edu.hk
- **Support indoor/outdoor 3D detection out of box** - **Support indoor/outdoor 3D detection out of box**
It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI. It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI. For nuScenes dataset, we also support [nuImages dataset](https://github.com/open-mmlab/mmdetection3d/tree/main/configs/nuimages).
For nuScenes dataset, we also support [nuImages dataset](https://github.com/open-mmlab/mmdetection3d/tree/main/configs/nuimages).
- **Natural integration with 2D detection** - **Natural integration with 2D detection**
...@@ -94,19 +96,71 @@ a part of the OpenMMLab project developed by [MMLab](http://mmlab.ie.cuhk.edu.hk ...@@ -94,19 +96,71 @@ a part of the OpenMMLab project developed by [MMLab](http://mmlab.ie.cuhk.edu.hk
| SECOND | 40 | 30 | ✗ | ✗ | | SECOND | 40 | 30 | ✗ | ✗ |
| Part-A2 | 17 | 14 | ✗ | ✗ | | Part-A2 | 17 | 14 | ✗ | ✗ |
</details>
Like [MMDetection](https://github.com/open-mmlab/mmdetection) and [MMCV](https://github.com/open-mmlab/mmcv), MMDetection3D can also be used as a library to support different projects on top of it. Like [MMDetection](https://github.com/open-mmlab/mmdetection) and [MMCV](https://github.com/open-mmlab/mmcv), MMDetection3D can also be used as a library to support different projects on top of it.
## License ## What's New
This project is released under the [Apache 2.0 license](LICENSE). ### Highlight
**We have renamed the branch `1.1` to `main` and switched the default branch from `master` to `main`. We encourage users to migrate to the latest version, though it comes with some cost. Please refer to [Migration Guide](docs/en/migration.md) for more details.**
## Changelog We have constructed a comprehensive LiDAR semantic segmentation benchmark on SemanticKITTI, including Cylinder3D, MinkUNet and SPVCNN methods. Noteworthy, the improved MinkUNetv2 can achieve 70.3 mIoU on the validation set of SemanticKITTI. We have also supported the training of BEVFusion and an occupancy prediction method, TPVFormer, in our `projects`. More new features about 3D perception are on the way. Please stay tuned!
**v1.1.1** was released in 30/5/2023:
- Support [TPVFormer](https://arxiv.org/pdf/2302.07817.pdf) in `projects`
- Support the training of BEVFusion in `projects`
- Support lidar-based 3D semantic segmentation benchmark
## Installation
**1.1.0** was released in 6/4/2023. Please refer to [Installation](https://mmdetection3d.readthedocs.io/en/latest/get_started.html) for installation instructions.
Please refer to [changelog.md](docs/en/notes/changelog.md) for details and release history. ## Getting Started
## Benchmark and model zoo For detailed user guides and advanced guides, please refer to our [documentation](https://mmdetection3d.readthedocs.io/en/latest/):
<details>
<summary>User Guides</summary>
- [Train & Test](https://mmdetection3d.readthedocs.io/en/latest/user_guides/index.html#train-test)
- [Learn about Configs](https://mmdetection3d.readthedocs.io/en/latest/user_guides/config.html)
- [Coordinate System](https://mmdetection3d.readthedocs.io/en/latest/user_guides/coord_sys_tutorial.html)
- [Dataset Preparation](https://mmdetection3d.readthedocs.io/en/latest/user_guides/dataset_prepare.html)
- [Customize Data Pipelines](https://mmdetection3d.readthedocs.io/en/latest/user_guides/data_pipeline.html)
- [Test and Train on Standard Datasets](https://mmdetection3d.readthedocs.io/en/latest/user_guides/train_test.html)
- [Inference](https://mmdetection3d.readthedocs.io/en/latest/user_guides/inference.html)
- [Train with Customized Datasets](https://mmdetection3d.readthedocs.io/en/latest/user_guides/new_data_model.html)
- [Useful Tools](https://mmdetection3d.readthedocs.io/en/latest/user_guides/index.html#useful-tools)
</details>
<details>
<summary>Advanced Guides</summary>
- [Datasets](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/index.html#datasets)
- [KITTI Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/kitti.html)
- [NuScenes Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/nuscenes.html)
- [Lyft Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/lyft.html)
- [Waymo Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/waymo.html)
- [SUN RGB-D Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/sunrgbd.html)
- [ScanNet Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/scannet.html)
- [S3DIS Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/s3dis.html)
- [SemanticKITTI Dataset](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/semantickitti.html)
- [Supported Tasks](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/index.html#supported-tasks)
- [LiDAR-Based 3D Detection](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/supported_tasks/lidar_det3d.html)
- [Vision-Based 3D Detection](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/supported_tasks/vision_det3d.html)
- [LiDAR-Based 3D Semantic Segmentation](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/supported_tasks/lidar_sem_seg3d.html)
- [Customization](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/index.html#customization)
- [Customize Datasets](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/customize_dataset.html)
- [Customize Models](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/customize_models.html)
- [Customize Runtime Settings](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/customize_runtime.html)
</details>
## Overview of Benchmark and Model Zoo
Results and models are available in the [model zoo](docs/en/model_zoo.md). Results and models are available in the [model zoo](docs/en/model_zoo.md).
...@@ -284,15 +338,17 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md). ...@@ -284,15 +338,17 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
**Note:** All the about **300+ models, methods of 40+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase. **Note:** All the about **300+ models, methods of 40+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.
## Installation ## FAQ
Please refer to [get_started.md](docs/en/get_started.md) for installation. Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions.
## Get Started ## Contributing
Please see [get_started.md](docs/en/get_started.md) for the basic usage of MMDetection3D. We provide guidance for quick run [with existing dataset](docs/en/user_guides/train_test.md) and [with new dataset](docs/en/user_guides/2_new_data_model.md) for beginners. There are also tutorials for [learning configuration systems](docs/en/user_guides/config.md), [customizing dataset](docs/en/advanced_guides/customize_dataset.md), [designing data pipeline](docs/en/user_guides/data_pipeline.md), [customizing models](docs/en/advanced_guides/customize_models.md), [customizing runtime settings](docs/en/advanced_guides/customize_runtime.md) and [Waymo dataset](docs/en/advanced_guides/datasets/waymo_det.md). We appreciate all contributions to improve MMDetection3D. Please refer to [CONTRIBUTING.md](docs/en/notes/contribution_guides.md) for the contributing guideline.
Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions. When updating the version of MMDetection3D, please also check the [compatibility doc](docs/en/notes/compatibility.md) to be aware of the BC-breaking updates introduced in each version. ## Acknowledgement
MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.
## Citation ## Citation
...@@ -307,14 +363,9 @@ If you find this project useful in your research, please consider cite: ...@@ -307,14 +363,9 @@ If you find this project useful in your research, please consider cite:
} }
``` ```
## Contributing ## License
We appreciate all contributions to improve MMDetection3D. Please refer to [CONTRIBUTING.md](./docs/en/notes/contribution_guides.md) for the contributing guideline.
## Acknowledgement
MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks. This project is released under the [Apache 2.0 license](LICENSE).
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.
## Projects in OpenMMLab ## Projects in OpenMMLab
......
...@@ -18,10 +18,26 @@ ...@@ -18,10 +18,26 @@
</div> </div>
<div>&nbsp;</div> <div>&nbsp;</div>
[![PyPI](https://img.shields.io/pypi/v/mmdet3d)](https://pypi.org/project/mmdet3d)
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/zh_CN/latest/) [![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/zh_CN/latest/)
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions) [![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d) [![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/master/LICENSE) [![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/main/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues)
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues)
[📘使用文档](https://mmdetection3d.readthedocs.io/zh_CN/latest/) |
[🛠️安装教程](https://mmdetection3d.readthedocs.io/zh_CN/latest/get_started.html) |
[👀模型库](https://mmdetection3d.readthedocs.io/zh_CN/latest/model_zoo.html) |
[🆕更新日志](https://mmdetection3d.readthedocs.io/en/latest/notes/changelog.html) |
[🚀进行中的项目](https://github.com/open-mmlab/mmdetection3d/projects) |
[🤔报告问题](https://github.com/open-mmlab/mmdetection3d/issues/new/choose)
</div>
<div align="center">
[English](README.md) | 简体中文
</div> </div>
...@@ -45,25 +61,16 @@ ...@@ -45,25 +61,16 @@
<img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a> <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
</div> </div>
**新闻**
**我们将 `1.1` 分支重命名为 `main` 并将默认分支从 `master` 切换到 `main`。我们鼓励用户迁移到最新版本,请参考 [迁移指南](docs/en/migration.md) 以了解更多细节。**
**v1.1.1** 版本已于 2023.5.30 发布
我们在 SemanticKITTI 上构建了一个全面的点云语义分割基准,包括 Cylinder3D 、 MinkUNet 和 SPVCNN 方法。其中,改进后的 MinkUNetv2 在验证集上可以达到 70.3 mIoU 。我们还在 projects 中支持了 BEVFusion 的训练和全新的 3D 占有网格预测网络 TPVFormer 。更多关于3D感知的新功能正在进行中。请继续关注!
## 简介 ## 简介
[English](README.md) | 简体中文 MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代面向 3D 检测的平台。它是 [OpenMMlab](https://openmmlab.com/) 项目的一部分。
主分支代码目前支持 PyTorch 1.6 以上的版本。
MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代面向 3D 检测的平台。它是 OpenMMlab 项目的一部分,这个项目由香港中文大学多媒体实验室和商汤科技联合发起 主分支代码目前支持 PyTorch 1.8 以上的版本
![demo image](resources/mmdet3d_outdoor_demo.gif) ![demo image](resources/mmdet3d_outdoor_demo.gif)
### 主要特性 <details open>
<summary>主要特性</summary>
- **支持多模态/单模态的检测器** - **支持多模态/单模态的检测器**
...@@ -71,8 +78,7 @@ MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代 ...@@ -71,8 +78,7 @@ MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代
- **支持户内/户外的数据集** - **支持户内/户外的数据集**
支持室内/室外的 3D 检测数据集,包括 ScanNet,SUNRGB-D,Waymo,nuScenes,Lyft,KITTI。 支持室内/室外的 3D 检测数据集,包括 ScanNet,SUNRGB-D,Waymo,nuScenes,Lyft,KITTI。对于 nuScenes 数据集,我们也支持 [nuImages 数据集](https://github.com/open-mmlab/mmdetection3d/tree/main/configs/nuimages)
对于 nuScenes 数据集,我们也支持 [nuImages 数据集](https://github.com/open-mmlab/mmdetection3d/tree/main/configs/nuimages)
- **与 2D 检测器的自然整合** - **与 2D 检测器的自然整合**
...@@ -90,17 +96,69 @@ MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代 ...@@ -90,17 +96,69 @@ MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代
| SECOND | 40 | 30 | ✗ | ✗ | | SECOND | 40 | 30 | ✗ | ✗ |
| Part-A2 | 17 | 14 | ✗ | ✗ | | Part-A2 | 17 | 14 | ✗ | ✗ |
</details>
[MMDetection](https://github.com/open-mmlab/mmdetection)[MMCV](https://github.com/open-mmlab/mmcv) 一样,MMDetection3D 也可以作为一个库去支持各式各样的项目。 [MMDetection](https://github.com/open-mmlab/mmdetection)[MMCV](https://github.com/open-mmlab/mmcv) 一样,MMDetection3D 也可以作为一个库去支持各式各样的项目。
## 开源许可证 ## 最新进展
该项目采用 [Apache 2.0 开源许可证](LICENSE) ### 亮点
## 更新日志 **我们将 `1.1` 分支重命名为 `main` 并将默认分支从 `master` 切换到 `main`。我们鼓励用户迁移到最新版本,请参考 [迁移指南](docs/en/migration.md)以了解更多细节。**
我们在 2023.1.7 发布了 **1.1.0rc3** 版本。 我们在 SemanticKITTI 上构建了一个全面的点云语义分割基准,包括 Cylinder3D 、MinkUNet 和 SPVCNN 方法。其中,改进后的 MinkUNetv2 在验证集上可以达到 70.3 mIoU。我们还在 `projects` 中支持了 BEVFusion 的训练和全新的 3D 占有网格预测网络 TPVFormer。更多关于 3D 感知的新功能正在进行中。请继续关注!
更多细节和版本发布历史可以参考 [changelog.md](docs/zh_cn/notes/changelog.md) **v1.1.1** 版本已经在 2023.5.30 发布:
-`projects` 中支持 [TPVFormer](https://arxiv.org/pdf/2302.07817.pdf)
-`projects` 中支持 BEVFusion 的训练
- 支持基于激光雷达的 3D 语义分割基准
## 安装
请参考[快速入门文档](https://mmdetection3d.readthedocs.io/zh_CN/latest/get_started.html)进行安装。
## 教程
<details>
<summary>用户指南</summary>
- [训练 & 测试](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/index.html#train-test)
- [学习配置文件](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/config.html)
- [坐标系](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/coord_sys_tutorial.html)
- [数据预处理](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/dataset_prepare.html)
- [自定义数据预处理流程](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/data_pipeline.html)
- [在标注数据集上测试和训练](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/train_test.html)
- [推理](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/inference.html)
- [在自定义数据集上进行训练](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/new_data_model.html)
- [实用工具](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/index.html#useful-tools)
</details>
<details>
<summary>进阶教程</summary>
- [数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#datasets)
- [KITTI 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/kitti.html)
- [NuScenes 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/nuscenes.html)
- [Lyft 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/lyft.html)
- [Waymo 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/waymo.html)
- [SUN RGB-D 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/sunrgbd.html)
- [ScanNet 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/scannet.html)
- [S3DIS 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/s3dis.html)
- [SemanticKITTI 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/semantickitti.html)
- [支持的任务](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#supported-tasks)
- [基于激光雷达的 3D 检测](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/lidar_det3d.html)
- [基于视觉的 3D 检测](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/vision_det3d.html)
- [基于激光雷达的 3D 语义分割](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/lidar_sem_seg3d.html)
- [自定义项目](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#customization)
- [自定义数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_dataset.html)
- [自定义模型](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_models.html)
- [自定义运行时配置](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_runtime.html)
</details>
## 基准测试和模型库
## 基准测试和模型库 ## 基准测试和模型库
...@@ -280,19 +338,21 @@ MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代 ...@@ -280,19 +338,21 @@ MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代
**注意:**[MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/zh_cn/model_zoo.md) 支持的基于 2D 检测的 **300+ 个模型,40+ 的论文算法**在 MMDetection3D 中都可以被训练或使用。 **注意:**[MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/zh_cn/model_zoo.md) 支持的基于 2D 检测的 **300+ 个模型,40+ 的论文算法**在 MMDetection3D 中都可以被训练或使用。
## 安装 ## 常见问题
请参考 [FAQ](docs/zh_cn/notes/faq.md) 了解其他用户的常见问题。
请参考[快速入门文档](docs/zh_cn/get_started.md)进行安装。 ## 贡献指南
## 快速入门 我们感谢所有的贡献者为改进和提升 MMDetection3D 所作出的努力。请参考[贡献指南](docs/en/notes/contribution_guides.md)来了解参与项目贡献的相关指引。
请参考[快速入门文档](docs/zh_cn/get_started.md)学习 MMDetection3D 的基本使用。我们为新手提供了分别针对[已有数据集](docs/zh_cn/user_guides/train_test.md)[新数据集](docs/zh_cn/user_guides/2_new_data_model.md)的使用指南。我们也提供了一些进阶教程,内容覆盖了[学习配置文件](docs/zh_cn/user_guides/config.md)[增加自定义数据集](docs/zh_cn/advanced_guides/customize_dataset.md)[设计新的数据预处理流程](docs/zh_cn/user_guides/data_pipeline.md)[增加自定义模型](docs/zh_cn/advanced_guides/customize_models.md)[增加自定义的运行时配置](docs/zh_cn/advanced_guides/customize_runtime.md)[Waymo 数据集](docs/zh_cn/advanced_guides/datasets/waymo_det.md) ## 致谢
请参考 [FAQ](docs/zh_cn/notes/faq.md) 查看一些常见的问题与解答。在升级 MMDetection3D 的版本时,请查看[兼容性文档](docs/zh_cn/notes/compatibility.md)以知晓每个版本引入的不与之前版本兼容的更新 MMDetection3D 是一款由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新的 3D 检测模型
## 引用 ## 引用
如果你觉得本项目对你的研究工作有所帮助,请参考如下 bibtex 引用 MMdetection3D 如果你觉得本项目对你的研究工作有所帮助,请参考如下 bibtex 引用 MMdetection3D
```latex ```latex
@misc{mmdet3d2020, @misc{mmdet3d2020,
...@@ -303,13 +363,9 @@ MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代 ...@@ -303,13 +363,9 @@ MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代
} }
``` ```
## 贡献指南 ## 开源许可证
我们感谢所有的贡献者为改进和提升 MMDetection3D 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。
## 致谢
MMDetection3D 是一款由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新的 3D 检测模型 该项目采用 [Apache 2.0 开源许可证](LICENSE)
## OpenMMLab 的其他项目 ## OpenMMLab 的其他项目
...@@ -338,10 +394,10 @@ MMDetection3D 是一款由来自不同高校和企业的研发人员共同参与 ...@@ -338,10 +394,10 @@ MMDetection3D 是一款由来自不同高校和企业的研发人员共同参与
## 欢迎加入 OpenMMLab 社区 ## 欢迎加入 OpenMMLab 社区
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=aCvMxdr3) 扫描下方的二维码可关注 OpenMMLab 团队的[知乎官方账号](https://www.zhihu.com/people/openmmlab),加入 OpenMMLab 团队的[官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=K0QI8ByU),或通过添加微信“Open小喵Lab”加入官方交流微信群。
<div align="center"> <div align="center">
<img src="https://user-images.githubusercontent.com/25839884/205870927-39f4946d-8751-4219-a4c0-740117558fd7.jpg" height="400" /> <img src="https://user-images.githubusercontent.com/25839884/203904835-62392033-02d4-4c73-a68c-c9e4c1e2b07f.jpg" height="400" /> <img src="https://user-images.githubusercontent.com/58739961/187154320-f3312cdf-31f2-4316-9dbb-8d7b0e1b7e08.jpg" height="400" /> <img src="https://user-images.githubusercontent.com/25839884/203904835-62392033-02d4-4c73-a68c-c9e4c1e2b07f.jpg" height="400" /> <img src="https://user-images.githubusercontent.com/58739961/187151778-d17c1368-125f-4fde-adbe-38cc6eb3be98.jpg" height="400" />
</div> </div>
我们会在 OpenMMLab 社区为大家 我们会在 OpenMMLab 社区为大家
......
...@@ -5,7 +5,7 @@ ...@@ -5,7 +5,7 @@
#### Highlights #### Highlights
- Support [TPVFormer](https://arxiv.org/pdf/2302.07817.pdf) in `projects` (#2399, #2517, #2535) - Support [TPVFormer](https://arxiv.org/pdf/2302.07817.pdf) in `projects` (#2399, #2517, #2535)
- Support the training of \[BEVFusion\] in `projects` (#2546) - Support the training of BEVFusion in `projects` (#2546)
- Support lidar-based 3D semantic segmentation benchmark (#2530, #2559) - Support lidar-based 3D semantic segmentation benchmark (#2530, #2559)
#### New Features #### New Features
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment