After running this command, plotted results including input data and the output of networks visualized on the input (e.g. `***_points.obj` and `***_pred.obj` in single-modality 3D detection task) will be saved in `${SHOW_DIR}`.
To see the prediction results during evaluation, you can run the following command
After running this command, you will obtain the input data, the output of networks and ground-truth labels visualized on the input (e.g. `***_points.obj`, `***_pred.obj`, `***_gt.obj`, `***_img.png` and `***_pred.png` in multi-modality detection task) in `${SHOW_DIR}`. When `show` is enabled, [Open3D](http://www.open3d.org/) will be used to visualize the results online. If you are running test in remote server without GUI, the online visualization is not supported, you can set `show=False` to only save the output results in `{SHOW_DIR}`.
As for offline visualization, you will have two options.
To visualize the results with `Open3D` backend, you can run the following command
Or you can use 3D visualization software such as the [MeshLab](http://www.meshlab.net/) to open these files under `${SHOW_DIR}` to see the 3D detection output. Specifically, open `***_points.obj` to see the input point cloud and open `***_pred.obj` to see the predicted 3D bounding boxes. This allows the inference and results generation to be done in remote server and the users can open them on their host with GUI.
**Notice**: The visualization API is a little unstable since we plan to refactor these parts together with MMDetection in the future.
### Dataset
We also provide scripts to visualize the dataset without inference. You can use `tools/misc/browse_dataset.py` to show loaded data and ground-truth online and save them on the disk. Currently we support single-modality 3D detection and 3D segmentation on all the datasets, multi-modality 3D detection on KITTI and SUN RGB-D, as well as monocular 3D detection on nuScenes. To browse the KITTI dataset, you can run the following command
```shell
python tools/misc/browse_dataset.py configs/_base_/datasets/kitti-3d-3class.py --task det --output-dir${OUTPUT_DIR}--online
```
**Notice**: Once specifying `--output-dir`, the images of views specified by users will be saved when pressing `_ESC_` in open3d window. If you don't have a monitor, you can remove the `--online` flag to only save the visualization results and browse them offline.
To verify the data consistency and the effect of data augmentation, you can also add `--aug` flag to visualize the data after data augmentation using the command as below:
```shell
python tools/misc/browse_dataset.py configs/_base_/datasets/kitti-3d-3class.py --task det --aug--output-dir${OUTPUT_DIR}--online
```
If you also want to show 2D images with 3D bounding boxes projected onto them, you need to find a config that supports multi-modality data loading, and then change the `--task` args to `multi_modality-det`. An example is showed below
**Note**: This tool is still experimental now, only SECOND is supported to be served with [`TorchServe`](https://pytorch.org/serve/). We'll support more models in the future.
**Note**: This tool is still experimental now, only SECOND is supported to be served with [`TorchServe`](https://pytorch.org/serve/). We'll support more models in the future.