Unverified Commit 32747a54 authored by ChaimZhu's avatar ChaimZhu Committed by GitHub
Browse files

[Fix] Remove `fp16` folder in `configs` (#1074)

* remove fp16 folders

* fix metafile.yml

* fix typos

* fix model_zoo.md

* unify collections

* fix typos

* fix_typos
parent 2abd9b1e
...@@ -25,11 +25,11 @@ GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=5 ./tools/slurm_test.sh $PARTITION fcos3d_r ...@@ -25,11 +25,11 @@ GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=5 ./tools/slurm_test.sh $PARTITION fcos3d_r
$CHECKPOINT_DIR/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py/latest.pth --eval map \ $CHECKPOINT_DIR/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py/latest.pth --eval map \
2>&1|tee $CHECKPOINT_DIR/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py/FULL_LOG.txt & 2>&1|tee $CHECKPOINT_DIR/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py/FULL_LOG.txt &
echo 'configs/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py' & echo 'configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py' &
mkdir -p $CHECKPOINT_DIR/configs/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py mkdir -p $CHECKPOINT_DIR/configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py
GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=5 ./tools/slurm_test.sh $PARTITION hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class configs/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py \ GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=5 ./tools/slurm_test.sh $PARTITION hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py \
$CHECKPOINT_DIR/configs/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py/latest.pth --eval map \ $CHECKPOINT_DIR/configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py/latest.pth --eval map \
2>&1|tee $CHECKPOINT_DIR/configs/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py/FULL_LOG.txt & 2>&1|tee $CHECKPOINT_DIR/configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py/FULL_LOG.txt &
echo 'configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py' & echo 'configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py' &
mkdir -p $CHECKPOINT_DIR/configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py mkdir -p $CHECKPOINT_DIR/configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py
......
...@@ -25,11 +25,11 @@ GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=5 ./tools/slurm_train.sh $PARTITION fcos3d_ ...@@ -25,11 +25,11 @@ GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=5 ./tools/slurm_train.sh $PARTITION fcos3d_
$CHECKPOINT_DIR/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py --cfg-options checkpoint_config.max_keep_ckpts=1 \ $CHECKPOINT_DIR/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py --cfg-options checkpoint_config.max_keep_ckpts=1 \
2>&1|tee $CHECKPOINT_DIR/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py/FULL_LOG.txt & 2>&1|tee $CHECKPOINT_DIR/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py/FULL_LOG.txt &
echo 'configs/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py' & echo 'configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py' &
mkdir -p $CHECKPOINT_DIR/configs/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py mkdir -p $CHECKPOINT_DIR/configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py
GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=5 ./tools/slurm_train.sh $PARTITION hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class configs/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py \ GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=5 ./tools/slurm_train.sh $PARTITION hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py \
$CHECKPOINT_DIR/configs/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py --cfg-options checkpoint_config.max_keep_ckpts=1 \ $CHECKPOINT_DIR/configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py --cfg-options checkpoint_config.max_keep_ckpts=1 \
2>&1|tee $CHECKPOINT_DIR/configs/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py/FULL_LOG.txt & 2>&1|tee $CHECKPOINT_DIR/configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py/FULL_LOG.txt &
echo 'configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py' & echo 'configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py' &
mkdir -p $CHECKPOINT_DIR/configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py mkdir -p $CHECKPOINT_DIR/configs/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py
......
# Mixed Precision Training
## Introduction
<!-- [OTHERS] -->
We implement mixed precision training and apply it to VoxelNets (e.g., SECOND and PointPillars).
The results are in the following tables.
**Note**: For mixed precision training, we currently do not support PointNet-based methods (e.g., VoteNet).
Mixed precision training for PointNet-based methods will be supported in the future release.
## Results
### SECOND on KITTI dataset
| Backbone |Class| Lr schd | FP32 Mem (GB) | FP16 Mem (GB) | FP32 mAP | FP16 mAP |Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | :------: |
| [SECFPN](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py)| Car |cyclic 80e|5.4|2.9|79.07|78.72|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301-1f5ad833.pth)&#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301.log.json)|
| [SECFPN](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py)| 3 Class |cyclic 80e|5.4|2.9|64.41|67.4|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059-05f67bdf.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059.log.json)|
### PointPillars on nuScenes dataset
| Backbone | Lr schd | FP32 Mem (GB) | FP16 Mem (GB) | FP32 mAP | FP32 NDS| FP16 mAP | FP16 NDS| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :----: |:----: | :------: |
|[SECFPN](./hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py)|2x|16.4|8.37|35.17|49.7|35.19|50.27|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626-c3f0483e.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626.log.json)|
|[FPN](./hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py)|2x|16.4|8.40|40.0|53.3|39.26|53.26|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719-269f9dd6.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719.log.json)|
**Note**:
1. With mixed precision training, we can train PointPillars with nuScenes dataset on 8 Titan XP GPUS with batch size of 2.
This will cause OOM error without mixed precision training.
2. The loss scale for PointPillars on nuScenes dataset is specifically tuned to avoid the loss to be Nan. We find 32 is more stable than 512, though loss scale 32 still cause Nan sometimes.
Collections:
- Name: FP16
Metadata:
Training Techniques:
- AdamW
- Mixed Precision Training
Training Resources: 8x TITAN Xp
Architecture:
- Hard Voxelization
Paper:
URL: https://arxiv.org/abs/1710.03740
Title: 'Mixed Precision Training'
README: configs/fp16/README.md
Code:
Version: v0.7.0
Models:
- Name: hv_second_secfpn_fp16_6x8_80e_kitti-3d-car
In Collection: FP16
Config: configs/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py
Metadata:
Training Data: KITTI
Training Memory (GB): 2.9
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
FP16 mAP: 78.72
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301-1f5ad833.pth
- Name: hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class
In Collection: FP16
Config: configs/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py
Metadata:
Training Data: KITTI
Training Memory (GB): 2.9
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
FP16 mAP: 67.4
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059-05f67bdf.pth
- Name: hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d
In Collection: FP16
Config: configs/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 8.37
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
FP16 mAP: 35.19
FP16 NDS: 50.27
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626-c3f0483e.pth
- Name: hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d
In Collection: FP16
Config: configs/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py
Metadata:
Training Data: nuScenes
Training Memory (GB): 8.40
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
FP16 mAP: 39.26
FP16 NDS: 53.26
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719-269f9dd6.pth
...@@ -31,7 +31,9 @@ We implement PointPillars and provide the results and checkpoints on KITTI, nuSc ...@@ -31,7 +31,9 @@ We implement PointPillars and provide the results and checkpoints on KITTI, nuSc
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
|[SECFPN](./hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||35.17|49.7|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json)| |[SECFPN](./hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||35.17|49.7|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json)|
|[SECFPN (FP16)](./hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py)|2x|8.37||35.19|50.27|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626-c3f0483e.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626.log.json)|
|[FPN](./hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||40.0|53.3|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405.log.json)| |[FPN](./hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||40.0|53.3|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405.log.json)|
|[FPN (FP16)](./hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py)|2x|8.40||39.26|53.26|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719-269f9dd6.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719.log.json)|
### Lyft ### Lyft
...@@ -62,3 +64,4 @@ We implement PointPillars and provide the results and checkpoints on KITTI, nuSc ...@@ -62,3 +64,4 @@ We implement PointPillars and provide the results and checkpoints on KITTI, nuSc
- **Implementation Details**: We basically follow the implementation in the [paper](https://arxiv.org/pdf/1912.04838.pdf) in terms of the network architecture (having a - **Implementation Details**: We basically follow the implementation in the [paper](https://arxiv.org/pdf/1912.04838.pdf) in terms of the network architecture (having a
stride of 1 for the first convolutional block). Different settings of voxelization, data augmentation and hyper parameters make these baselines outperform those in the paper by about 7 mAP for car and 4 mAP for pedestrian with only a subset of the whole dataset. All of these results are achieved without bells-and-whistles, e.g. ensemble, multi-scale training and test augmentation. stride of 1 for the first convolutional block). Different settings of voxelization, data augmentation and hyper parameters make these baselines outperform those in the paper by about 7 mAP for car and 4 mAP for pedestrian with only a subset of the whole dataset. All of these results are achieved without bells-and-whistles, e.g. ensemble, multi-scale training and test augmentation.
- **License Aggrement**: To comply the [license agreement of Waymo dataset](https://waymo.com/open/terms/), the pre-trained models on Waymo dataset are not released. We still release the training log as a reference to ease the future research. - **License Aggrement**: To comply the [license agreement of Waymo dataset](https://waymo.com/open/terms/), the pre-trained models on Waymo dataset are not released. We still release the training log as a reference to ease the future research.
- `FP16` means Mixed Precision (FP16) is adopted in training. With mixed precision training, we can train PointPillars with nuScenes dataset on 8 Titan XP GPUS with batch size of 2. This will cause OOM error without mixed precision training. The loss scale for PointPillars on nuScenes dataset is specifically tuned to avoid the loss to be Nan. We find 32 is more stable than 512, though loss scale 32 still cause Nan sometimes.
_base_ = '../pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py' _base_ = './hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py'
data = dict(samples_per_gpu=2, workers_per_gpu=2) data = dict(samples_per_gpu=2, workers_per_gpu=2)
# fp16 settings, the loss scale is specifically tuned to avoid Nan # fp16 settings, the loss scale is specifically tuned to avoid Nan
fp16 = dict(loss_scale=32.) fp16 = dict(loss_scale=32.)
_base_ = '../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py' _base_ = './hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py'
data = dict(samples_per_gpu=2, workers_per_gpu=2) data = dict(samples_per_gpu=2, workers_per_gpu=2)
# fp16 settings, the loss scale is specifically tuned to avoid Nan # fp16 settings, the loss scale is specifically tuned to avoid Nan
fp16 = dict(loss_scale=32.) fp16 = dict(loss_scale=32.)
...@@ -167,3 +167,47 @@ Models: ...@@ -167,3 +167,47 @@ Models:
mAPH@L1: 63.3 mAPH@L1: 63.3
mAP@L2: 62.6 mAP@L2: 62.6
mAPH@L2: 57.6 mAPH@L2: 57.6
- Name: hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d
In Collection: PointPillars
Config: configs/pointpillars/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d.py
Metadata:
Training Techniques:
- AdamW
- Mixed Precision Training
Training Resources: 8x TITAN Xp
Architecture:
- Hard Voxelization
Training Data: nuScenes
Training Memory (GB): 8.37
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 35.19
NDS: 50.27
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_fp16_2x8_2x_nus-3d_20201020_222626-c3f0483e.pth
Code:
Version: v0.7.0
- Name: hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d
In Collection: PointPillars
Config: configs/pointpillars/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py
Metadata:
Training Techniques:
- AdamW
- Mixed Precision Training
Training Resources: 8x TITAN Xp
Architecture:
- Hard Voxelization
Training Data: nuScenes
Training Memory (GB): 8.40
Results:
- Task: 3D Object Detection
Dataset: nuScenes
Metrics:
mAP: 39.26
NDS: 53.26
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d_20201021_120719-269f9dd6.pth
Code:
Version: v0.7.0
_base_ = '../regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py' _base_ = './hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py'
data = dict(samples_per_gpu=2, workers_per_gpu=2) data = dict(samples_per_gpu=2, workers_per_gpu=2)
# fp16 settings, the loss scale is specifically tuned to avoid Nan # fp16 settings, the loss scale is specifically tuned to avoid Nan
fp16 = dict(loss_scale=32.) fp16 = dict(loss_scale=32.)
...@@ -23,7 +23,9 @@ We implement SECOND and provide the results and checkpoints on KITTI dataset. ...@@ -23,7 +23,9 @@ We implement SECOND and provide the results and checkpoints on KITTI dataset.
| Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP |Download | | Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP |Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-car.py)| Car |cyclic 80e|5.4||79.07|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238.log.json)| | [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-car.py)| Car |cyclic 80e|5.4||79.07|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238.log.json)|
| [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py)| Car |cyclic 80e|2.9||78.72|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301-1f5ad833.pth)&#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301.log.json)|
| [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-3class.py)| 3 Class |cyclic 80e|5.4||64.41|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238-9208083a.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238.log.json)| | [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-3class.py)| 3 Class |cyclic 80e|5.4||64.41|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238-9208083a.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238.log.json)|
| [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py)| 3 Class |cyclic 80e|2.9||67.4|[model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059-05f67bdf.pth) &#124; [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059.log.json)|
### Waymo ### Waymo
...@@ -34,4 +36,7 @@ We implement SECOND and provide the results and checkpoints on KITTI dataset. ...@@ -34,4 +36,7 @@ We implement SECOND and provide the results and checkpoints on KITTI dataset.
| above @ Pedestrian|||2x|8.12||68.1|59.1|59.5|51.5| | | above @ Pedestrian|||2x|8.12||68.1|59.1|59.5|51.5| |
| above @ Cyclist|||2x|8.12||60.7|59.5|58.4|57.3| | | above @ Cyclist|||2x|8.12||60.7|59.5|58.4|57.3| |
Note: See more details about metrics and data split on Waymo [HERE](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/pointpillars). For implementation details, we basically follow the original settings. All of these results are achieved without bells-and-whistles, e.g. ensemble, multi-scale training and test augmentation. Note:
- See more details about metrics and data split on Waymo [HERE](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/pointpillars). For implementation details, we basically follow the original settings. All of these results are achieved without bells-and-whistles, e.g. ensemble, multi-scale training and test augmentation.
- `FP16` means Mixed Precision (FP16) is adopted in training.
_base_ = '../second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py' _base_ = './hv_second_secfpn_6x8_80e_kitti-3d-3class.py'
# fp16 settings # fp16 settings
fp16 = dict(loss_scale=512.) fp16 = dict(loss_scale=512.)
_base_ = '../second/hv_second_secfpn_6x8_80e_kitti-3d-car.py' _base_ = './hv_second_secfpn_6x8_80e_kitti-3d-car.py'
# fp16 settings # fp16 settings
fp16 = dict(loss_scale=512.) fp16 = dict(loss_scale=512.)
...@@ -57,3 +57,41 @@ Models: ...@@ -57,3 +57,41 @@ Models:
mAPH@L1: 61.7 mAPH@L1: 61.7
mAP@L2: 58.9 mAP@L2: 58.9
mAPH@L2: 55.7 mAPH@L2: 55.7
- Name: hv_second_secfpn_fp16_6x8_80e_kitti-3d-car
In Collection: SECOND
Config: configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py
Metadata:
Training Techniques:
- AdamW
- Mixed Precision Training
Training Resources: 8x TITAN Xp
Training Data: KITTI
Training Memory (GB): 2.9
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
mAP: 78.72
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301-1f5ad833.pth
Code:
Version: v0.7.0
- Name: hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class
In Collection: SECOND
Config: configs/second/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py
Metadata:
Training Techniques:
- AdamW
- Mixed Precision Training
Training Resources: 8x TITAN Xp
Training Data: KITTI
Training Memory (GB): 2.9
Results:
- Task: 3D Object Detection
Dataset: KITTI
Metrics:
mAP: 67.4
Weights: https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059-05f67bdf.pth
Code:
Version: v0.7.0
...@@ -89,3 +89,7 @@ Please refer to [SMOKE](https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0. ...@@ -89,3 +89,7 @@ Please refer to [SMOKE](https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.
### PGD ### PGD
Please refer to [PGD](https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/pgd) for details. We provide PGD baselines on KITTI and nuScenes dataset. Please refer to [PGD](https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/pgd) for details. We provide PGD baselines on KITTI and nuScenes dataset.
### Mixed Precision (FP16) Training
Please refer [Mixed Precision (FP16) Training] on PointPillars (https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/pointpillars/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py) for details.
...@@ -91,3 +91,7 @@ ...@@ -91,3 +91,7 @@
### PGD ### PGD
请参考 [PGD](https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/pgd) 获取更多细节,我们在 KITTI 和 nuScenes 数据集上给出了相应的结果. 请参考 [PGD](https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/pgd) 获取更多细节,我们在 KITTI 和 nuScenes 数据集上给出了相应的结果.
### Mixed Precision (FP16) Training
细节请参考 [Mixed Precision (FP16) Training] 在 PointPillars 训练的样例 (https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0/configs/pointpillars/hv_pointpillars_fpn_sbn-all_fp16_2x8_2x_nus-3d.py).
...@@ -2,7 +2,6 @@ Import: ...@@ -2,7 +2,6 @@ Import:
- configs/3dssd/metafile.yml - configs/3dssd/metafile.yml
- configs/centerpoint/metafile.yml - configs/centerpoint/metafile.yml
- configs/dynamic_voxelization/metafile.yml - configs/dynamic_voxelization/metafile.yml
- configs/fp16/metafile.yml
- configs/free_anchor/metafile.yml - configs/free_anchor/metafile.yml
- configs/h3dnet/metafile.yml - configs/h3dnet/metafile.yml
- configs/imvotenet/metafile.yml - configs/imvotenet/metafile.yml
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment