Unverified Commit 2f88c124 authored by Wenhao Wu's avatar Wenhao Wu Committed by GitHub
Browse files

[Enhance] Replace mmdet3d ops with mmcv ops (#1240)

* import some ops from mmcv instead of mmdet3d

* use mmcv ops in primitive_head.py

* use mmcv ops in PAConv

* remove ops in mmdet3d & fix some bugs

* remove spconv & fix some bugs

* fix voxelization unittest

* remove spconv in ops/__init__.py

* refine ops/__init__.py

* recover sparse_block in ops/__init__

* fix parta2_bbox_head unittest

* remove remaining ops

* recover ops/__init__.py for bc breaking

* add source of ops from mmcv

* recover the unittest for voxelization

* remove unittest
parent 41d77dad
......@@ -2,28 +2,32 @@
from mmcv.ops import (RoIAlign, SigmoidFocalLoss, get_compiler_version,
get_compiling_cuda_version, nms, roi_align,
sigmoid_focal_loss)
from mmcv.ops.assign_score_withk import assign_score_withk
from mmcv.ops.ball_query import ball_query
from mmcv.ops.furthest_point_sample import (furthest_point_sample,
furthest_point_sample_with_dist)
from mmcv.ops.gather_points import gather_points
from mmcv.ops.group_points import GroupAll, QueryAndGroup, grouping_operation
from mmcv.ops.knn import knn
from mmcv.ops.points_in_boxes import (points_in_boxes_all, points_in_boxes_cpu,
points_in_boxes_part)
from mmcv.ops.points_sampler import PointsSampler as Points_Sampler
from mmcv.ops.roiaware_pool3d import RoIAwarePool3d
from mmcv.ops.roipoint_pool3d import RoIPointPool3d
from mmcv.ops.scatter_points import DynamicScatter, dynamic_scatter
from mmcv.ops.three_interpolate import three_interpolate
from mmcv.ops.three_nn import three_nn
from mmcv.ops.voxelize import Voxelization, voxelization
from .ball_query import ball_query
from .dgcnn_modules import DGCNNFAModule, DGCNNFPModule, DGCNNGFModule
from .furthest_point_sample import (Points_Sampler, furthest_point_sample,
furthest_point_sample_with_dist)
from .gather_points import gather_points
from .group_points import (GroupAll, QueryAndGroup, group_points,
grouping_operation)
from .interpolate import three_interpolate, three_nn
from .knn import knn
from .norm import NaiveSyncBatchNorm1d, NaiveSyncBatchNorm2d
from .paconv import PAConv, PAConvCUDA, assign_score_withk
from .paconv import PAConv, PAConvCUDA
from .pointnet_modules import (PAConvCUDASAModule, PAConvCUDASAModuleMSG,
PAConvSAModule, PAConvSAModuleMSG,
PointFPModule, PointSAModule, PointSAModuleMSG,
build_sa_module)
from .roiaware_pool3d import (RoIAwarePool3d, points_in_boxes_all,
points_in_boxes_cpu, points_in_boxes_part)
from .roipoint_pool3d import RoIPointPool3d
from .sparse_block import (SparseBasicBlock, SparseBottleneck,
make_sparse_convmodule)
from .voxel import DynamicScatter, Voxelization, dynamic_scatter, voxelization
__all__ = [
'nms', 'soft_nms', 'RoIAlign', 'roi_align', 'get_compiler_version',
......@@ -34,9 +38,9 @@ __all__ = [
'RoIAwarePool3d', 'points_in_boxes_part', 'points_in_boxes_cpu',
'make_sparse_convmodule', 'ball_query', 'knn', 'furthest_point_sample',
'furthest_point_sample_with_dist', 'three_interpolate', 'three_nn',
'gather_points', 'grouping_operation', 'group_points', 'GroupAll',
'QueryAndGroup', 'PointSAModule', 'PointSAModuleMSG', 'PointFPModule',
'DGCNNFPModule', 'DGCNNGFModule', 'DGCNNFAModule', 'points_in_boxes_all',
'gather_points', 'grouping_operation', 'GroupAll', 'QueryAndGroup',
'PointSAModule', 'PointSAModuleMSG', 'PointFPModule', 'DGCNNFPModule',
'DGCNNGFModule', 'DGCNNFAModule', 'points_in_boxes_all',
'get_compiler_version', 'assign_score_withk', 'get_compiling_cuda_version',
'Points_Sampler', 'build_sa_module', 'PAConv', 'PAConvCUDA',
'PAConvSAModuleMSG', 'PAConvSAModule', 'PAConvCUDASAModule',
......
# Copyright (c) OpenMMLab. All rights reserved.
from .ball_query import ball_query
__all__ = ['ball_query']
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch.autograd import Function
from . import ball_query_ext
class BallQuery(Function):
"""Ball Query.
Find nearby points in spherical space.
"""
@staticmethod
def forward(ctx, min_radius: float, max_radius: float, sample_num: int,
xyz: torch.Tensor, center_xyz: torch.Tensor) -> torch.Tensor:
"""forward.
Args:
min_radius (float): minimum radius of the balls.
max_radius (float): maximum radius of the balls.
sample_num (int): maximum number of features in the balls.
xyz (Tensor): (B, N, 3) xyz coordinates of the features.
center_xyz (Tensor): (B, npoint, 3) centers of the ball query.
Returns:
Tensor: (B, npoint, nsample) tensor with the indices of
the features that form the query balls.
"""
assert center_xyz.is_contiguous()
assert xyz.is_contiguous()
assert min_radius < max_radius
B, N, _ = xyz.size()
npoint = center_xyz.size(1)
idx = torch.cuda.IntTensor(B, npoint, sample_num).zero_()
ball_query_ext.ball_query_wrapper(B, N, npoint, min_radius, max_radius,
sample_num, center_xyz, xyz, idx)
ctx.mark_non_differentiable(idx)
return idx
@staticmethod
def backward(ctx, a=None):
return None, None, None, None
ball_query = BallQuery.apply
// Modified from
// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/ball_query.cpp
#include <THC/THC.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <torch/extension.h>
#include <torch/serialize/tensor.h>
#include <vector>
extern THCState *state;
#define CHECK_CUDA(x) \
TORCH_CHECK(x.type().is_cuda(), #x, " must be a CUDAtensor ")
#define CHECK_CONTIGUOUS(x) \
TORCH_CHECK(x.is_contiguous(), #x, " must be contiguous ")
#define CHECK_INPUT(x) \
CHECK_CUDA(x); \
CHECK_CONTIGUOUS(x)
int ball_query_wrapper(int b, int n, int m, float min_radius, float max_radius, int nsample,
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor,
at::Tensor idx_tensor);
void ball_query_kernel_launcher(int b, int n, int m, float min_radius, float max_radius,
int nsample, const float *xyz, const float *new_xyz,
int *idx, cudaStream_t stream);
int ball_query_wrapper(int b, int n, int m, float min_radius, float max_radius, int nsample,
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor,
at::Tensor idx_tensor) {
CHECK_INPUT(new_xyz_tensor);
CHECK_INPUT(xyz_tensor);
const float *new_xyz = new_xyz_tensor.data_ptr<float>();
const float *xyz = xyz_tensor.data_ptr<float>();
int *idx = idx_tensor.data_ptr<int>();
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
ball_query_kernel_launcher(b, n, m, min_radius, max_radius,
nsample, new_xyz, xyz, idx, stream);
return 1;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("ball_query_wrapper", &ball_query_wrapper, "ball_query_wrapper");
}
// Modified from
// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/ball_query_gpu.cu
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define THREADS_PER_BLOCK 256
#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
__global__ void ball_query_kernel(int b, int n, int m,
float min_radius,
float max_radius,
int nsample,
const float *__restrict__ new_xyz,
const float *__restrict__ xyz,
int *__restrict__ idx) {
// new_xyz: (B, M, 3)
// xyz: (B, N, 3)
// output:
// idx: (B, M, nsample)
int bs_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || pt_idx >= m) return;
new_xyz += bs_idx * m * 3 + pt_idx * 3;
xyz += bs_idx * n * 3;
idx += bs_idx * m * nsample + pt_idx * nsample;
float max_radius2 = max_radius * max_radius;
float min_radius2 = min_radius * min_radius;
float new_x = new_xyz[0];
float new_y = new_xyz[1];
float new_z = new_xyz[2];
int cnt = 0;
for (int k = 0; k < n; ++k) {
float x = xyz[k * 3 + 0];
float y = xyz[k * 3 + 1];
float z = xyz[k * 3 + 2];
float d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) +
(new_z - z) * (new_z - z);
if (d2 == 0 || (d2 >= min_radius2 && d2 < max_radius2)) {
if (cnt == 0) {
for (int l = 0; l < nsample; ++l) {
idx[l] = k;
}
}
idx[cnt] = k;
++cnt;
if (cnt >= nsample) break;
}
}
}
void ball_query_kernel_launcher(int b, int n, int m, float min_radius, float max_radius,
int nsample, const float *new_xyz, const float *xyz,
int *idx, cudaStream_t stream) {
// new_xyz: (B, M, 3)
// xyz: (B, N, 3)
// output:
// idx: (B, M, nsample)
cudaError_t err;
dim3 blocks(DIVUP(m, THREADS_PER_BLOCK),
b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
ball_query_kernel<<<blocks, threads, 0, stream>>>(b, n, m, min_radius, max_radius,
nsample, new_xyz, xyz, idx);
// cudaDeviceSynchronize(); // for using printf in kernel function
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.cnn import ConvModule
from mmcv.ops.group_points import GroupAll, QueryAndGroup, grouping_operation
from torch import nn as nn
from torch.nn import functional as F
from ..group_points import GroupAll, QueryAndGroup, grouping_operation
class BaseDGCNNGFModule(nn.Module):
"""Base module for point graph feature module used in DGCNN.
......
# Copyright (c) OpenMMLab. All rights reserved.
from .furthest_point_sample import (furthest_point_sample,
furthest_point_sample_with_dist)
from .points_sampler import Points_Sampler
__all__ = [
'furthest_point_sample', 'furthest_point_sample_with_dist',
'Points_Sampler'
]
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch.autograd import Function
from . import furthest_point_sample_ext
class FurthestPointSampling(Function):
"""Furthest Point Sampling.
Uses iterative furthest point sampling to select a set of features whose
corresponding points have the furthest distance.
"""
@staticmethod
def forward(ctx, points_xyz: torch.Tensor,
num_points: int) -> torch.Tensor:
"""forward.
Args:
points_xyz (Tensor): (B, N, 3) where N > num_points.
num_points (int): Number of points in the sampled set.
Returns:
Tensor: (B, num_points) indices of the sampled points.
"""
assert points_xyz.is_contiguous()
B, N = points_xyz.size()[:2]
output = torch.cuda.IntTensor(B, num_points)
temp = torch.cuda.FloatTensor(B, N).fill_(1e10)
furthest_point_sample_ext.furthest_point_sampling_wrapper(
B, N, num_points, points_xyz, temp, output)
ctx.mark_non_differentiable(output)
return output
@staticmethod
def backward(xyz, a=None):
return None, None
class FurthestPointSamplingWithDist(Function):
"""Furthest Point Sampling With Distance.
Uses iterative furthest point sampling to select a set of features whose
corresponding points have the furthest distance.
"""
@staticmethod
def forward(ctx, points_dist: torch.Tensor,
num_points: int) -> torch.Tensor:
"""forward.
Args:
points_dist (Tensor): (B, N, N) Distance between each point pair.
num_points (int): Number of points in the sampled set.
Returns:
Tensor: (B, num_points) indices of the sampled points.
"""
assert points_dist.is_contiguous()
B, N, _ = points_dist.size()
output = points_dist.new_zeros([B, num_points], dtype=torch.int32)
temp = points_dist.new_zeros([B, N]).fill_(1e10)
furthest_point_sample_ext.furthest_point_sampling_with_dist_wrapper(
B, N, num_points, points_dist, temp, output)
ctx.mark_non_differentiable(output)
return output
@staticmethod
def backward(xyz, a=None):
return None, None
furthest_point_sample = FurthestPointSampling.apply
furthest_point_sample_with_dist = FurthestPointSamplingWithDist.apply
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List
import torch
from mmcv.runner import force_fp32
from torch import nn as nn
from .furthest_point_sample import (furthest_point_sample,
furthest_point_sample_with_dist)
from .utils import calc_square_dist
def get_sampler_type(sampler_type):
"""Get the type and mode of points sampler.
Args:
sampler_type (str): The type of points sampler.
The valid value are "D-FPS", "F-FPS", or "FS".
Returns:
class: Points sampler type.
"""
if sampler_type == 'D-FPS':
sampler = DFPS_Sampler
elif sampler_type == 'F-FPS':
sampler = FFPS_Sampler
elif sampler_type == 'FS':
sampler = FS_Sampler
else:
raise ValueError('Only "sampler_type" of "D-FPS", "F-FPS", or "FS"'
f' are supported, got {sampler_type}')
return sampler
class Points_Sampler(nn.Module):
"""Points sampling.
Args:
num_point (list[int]): Number of sample points.
fps_mod_list (list[str], optional): Type of FPS method, valid mod
['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS'].
F-FPS: using feature distances for FPS.
D-FPS: using Euclidean distances of points for FPS.
FS: using F-FPS and D-FPS simultaneously.
fps_sample_range_list (list[int], optional):
Range of points to apply FPS. Default: [-1].
"""
def __init__(self,
num_point: List[int],
fps_mod_list: List[str] = ['D-FPS'],
fps_sample_range_list: List[int] = [-1]):
super(Points_Sampler, self).__init__()
# FPS would be applied to different fps_mod in the list,
# so the length of the num_point should be equal to
# fps_mod_list and fps_sample_range_list.
assert len(num_point) == len(fps_mod_list) == len(
fps_sample_range_list)
self.num_point = num_point
self.fps_sample_range_list = fps_sample_range_list
self.samplers = nn.ModuleList()
for fps_mod in fps_mod_list:
self.samplers.append(get_sampler_type(fps_mod)())
self.fp16_enabled = False
@force_fp32()
def forward(self, points_xyz, features):
"""forward.
Args:
points_xyz (Tensor): (B, N, 3) xyz coordinates of the features.
features (Tensor): (B, C, N) Descriptors of the features.
Return:
Tensor: (B, npoint, sample_num) Indices of sampled points.
"""
indices = []
last_fps_end_index = 0
for fps_sample_range, sampler, npoint in zip(
self.fps_sample_range_list, self.samplers, self.num_point):
assert fps_sample_range < points_xyz.shape[1]
if fps_sample_range == -1:
sample_points_xyz = points_xyz[:, last_fps_end_index:]
sample_features = features[:, :, last_fps_end_index:] if \
features is not None else None
else:
sample_points_xyz = \
points_xyz[:, last_fps_end_index:fps_sample_range]
sample_features = \
features[:, :, last_fps_end_index:fps_sample_range] if \
features is not None else None
fps_idx = sampler(sample_points_xyz.contiguous(), sample_features,
npoint)
indices.append(fps_idx + last_fps_end_index)
last_fps_end_index += fps_sample_range
indices = torch.cat(indices, dim=1)
return indices
class DFPS_Sampler(nn.Module):
"""DFPS_Sampling.
Using Euclidean distances of points for FPS.
"""
def __init__(self):
super(DFPS_Sampler, self).__init__()
def forward(self, points, features, npoint):
"""Sampling points with D-FPS."""
fps_idx = furthest_point_sample(points.contiguous(), npoint)
return fps_idx
class FFPS_Sampler(nn.Module):
"""FFPS_Sampler.
Using feature distances for FPS.
"""
def __init__(self):
super(FFPS_Sampler, self).__init__()
def forward(self, points, features, npoint):
"""Sampling points with F-FPS."""
assert features is not None, \
'feature input to FFPS_Sampler should not be None'
features_for_fps = torch.cat([points, features.transpose(1, 2)], dim=2)
features_dist = calc_square_dist(
features_for_fps, features_for_fps, norm=False)
fps_idx = furthest_point_sample_with_dist(features_dist, npoint)
return fps_idx
class FS_Sampler(nn.Module):
"""FS_Sampling.
Using F-FPS and D-FPS simultaneously.
"""
def __init__(self):
super(FS_Sampler, self).__init__()
def forward(self, points, features, npoint):
"""Sampling points with FS_Sampling."""
assert features is not None, \
'feature input to FS_Sampler should not be None'
features_for_fps = torch.cat([points, features.transpose(1, 2)], dim=2)
features_dist = calc_square_dist(
features_for_fps, features_for_fps, norm=False)
fps_idx_ffps = furthest_point_sample_with_dist(features_dist, npoint)
fps_idx_dfps = furthest_point_sample(points, npoint)
fps_idx = torch.cat([fps_idx_ffps, fps_idx_dfps], dim=1)
return fps_idx
// Modified from
// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/sampling.cpp
#include <ATen/cuda/CUDAContext.h>
#include <THC/THC.h>
#include <torch/extension.h>
#include <torch/serialize/tensor.h>
#include <vector>
extern THCState *state;
int furthest_point_sampling_wrapper(int b, int n, int m,
at::Tensor points_tensor,
at::Tensor temp_tensor,
at::Tensor idx_tensor);
void furthest_point_sampling_kernel_launcher(int b, int n, int m,
const float *dataset, float *temp,
int *idxs, cudaStream_t stream);
int furthest_point_sampling_with_dist_wrapper(int b, int n, int m,
at::Tensor points_tensor,
at::Tensor temp_tensor,
at::Tensor idx_tensor);
void furthest_point_sampling_with_dist_kernel_launcher(int b, int n, int m,
const float *dataset,
float *temp, int *idxs,
cudaStream_t stream);
int furthest_point_sampling_wrapper(int b, int n, int m,
at::Tensor points_tensor,
at::Tensor temp_tensor,
at::Tensor idx_tensor) {
const float *points = points_tensor.data_ptr<float>();
float *temp = temp_tensor.data_ptr<float>();
int *idx = idx_tensor.data_ptr<int>();
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
furthest_point_sampling_kernel_launcher(b, n, m, points, temp, idx, stream);
return 1;
}
int furthest_point_sampling_with_dist_wrapper(int b, int n, int m,
at::Tensor points_tensor,
at::Tensor temp_tensor,
at::Tensor idx_tensor) {
const float *points = points_tensor.data<float>();
float *temp = temp_tensor.data<float>();
int *idx = idx_tensor.data<int>();
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
furthest_point_sampling_with_dist_kernel_launcher(b, n, m, points, temp, idx, stream);
return 1;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("furthest_point_sampling_wrapper", &furthest_point_sampling_wrapper,
"furthest_point_sampling_wrapper");
m.def("furthest_point_sampling_with_dist_wrapper",
&furthest_point_sampling_with_dist_wrapper,
"furthest_point_sampling_with_dist_wrapper");
}
// Modified from
// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/sampling_gpu.cu
#include <stdio.h>
#include <stdlib.h>
#define TOTAL_THREADS 1024
#define THREADS_PER_BLOCK 256
#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
inline int opt_n_threads(int work_size) {
const int pow_2 = std::log(static_cast<double>(work_size)) / std::log(2.0);
return max(min(1 << pow_2, TOTAL_THREADS), 1);
}
__device__ void __update(float *__restrict__ dists, int *__restrict__ dists_i,
int idx1, int idx2) {
const float v1 = dists[idx1], v2 = dists[idx2];
const int i1 = dists_i[idx1], i2 = dists_i[idx2];
dists[idx1] = max(v1, v2);
dists_i[idx1] = v2 > v1 ? i2 : i1;
}
template <unsigned int block_size>
__global__ void furthest_point_sampling_kernel(
int b, int n, int m, const float *__restrict__ dataset,
float *__restrict__ temp, int *__restrict__ idxs) {
// dataset: (B, N, 3)
// tmp: (B, N)
// output:
// idx: (B, M)
if (m <= 0) return;
__shared__ float dists[block_size];
__shared__ int dists_i[block_size];
int batch_index = blockIdx.x;
dataset += batch_index * n * 3;
temp += batch_index * n;
idxs += batch_index * m;
int tid = threadIdx.x;
const int stride = block_size;
int old = 0;
if (threadIdx.x == 0) idxs[0] = old;
__syncthreads();
for (int j = 1; j < m; j++) {
int besti = 0;
float best = -1;
float x1 = dataset[old * 3 + 0];
float y1 = dataset[old * 3 + 1];
float z1 = dataset[old * 3 + 2];
for (int k = tid; k < n; k += stride) {
float x2, y2, z2;
x2 = dataset[k * 3 + 0];
y2 = dataset[k * 3 + 1];
z2 = dataset[k * 3 + 2];
// float mag = (x2 * x2) + (y2 * y2) + (z2 * z2);
// if (mag <= 1e-3)
// continue;
float d =
(x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) * (z2 - z1);
float d2 = min(d, temp[k]);
temp[k] = d2;
besti = d2 > best ? k : besti;
best = d2 > best ? d2 : best;
}
dists[tid] = best;
dists_i[tid] = besti;
__syncthreads();
if (block_size >= 1024) {
if (tid < 512) {
__update(dists, dists_i, tid, tid + 512);
}
__syncthreads();
}
if (block_size >= 512) {
if (tid < 256) {
__update(dists, dists_i, tid, tid + 256);
}
__syncthreads();
}
if (block_size >= 256) {
if (tid < 128) {
__update(dists, dists_i, tid, tid + 128);
}
__syncthreads();
}
if (block_size >= 128) {
if (tid < 64) {
__update(dists, dists_i, tid, tid + 64);
}
__syncthreads();
}
if (block_size >= 64) {
if (tid < 32) {
__update(dists, dists_i, tid, tid + 32);
}
__syncthreads();
}
if (block_size >= 32) {
if (tid < 16) {
__update(dists, dists_i, tid, tid + 16);
}
__syncthreads();
}
if (block_size >= 16) {
if (tid < 8) {
__update(dists, dists_i, tid, tid + 8);
}
__syncthreads();
}
if (block_size >= 8) {
if (tid < 4) {
__update(dists, dists_i, tid, tid + 4);
}
__syncthreads();
}
if (block_size >= 4) {
if (tid < 2) {
__update(dists, dists_i, tid, tid + 2);
}
__syncthreads();
}
if (block_size >= 2) {
if (tid < 1) {
__update(dists, dists_i, tid, tid + 1);
}
__syncthreads();
}
old = dists_i[0];
if (tid == 0) idxs[j] = old;
}
}
void furthest_point_sampling_kernel_launcher(int b, int n, int m,
const float *dataset, float *temp,
int *idxs, cudaStream_t stream) {
// dataset: (B, N, 3)
// tmp: (B, N)
// output:
// idx: (B, M)
cudaError_t err;
unsigned int n_threads = opt_n_threads(n);
switch (n_threads) {
case 1024:
furthest_point_sampling_kernel<1024>
<<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
break;
case 512:
furthest_point_sampling_kernel<512>
<<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
break;
case 256:
furthest_point_sampling_kernel<256>
<<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
break;
case 128:
furthest_point_sampling_kernel<128>
<<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
break;
case 64:
furthest_point_sampling_kernel<64>
<<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
break;
case 32:
furthest_point_sampling_kernel<32>
<<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
break;
case 16:
furthest_point_sampling_kernel<16>
<<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
break;
case 8:
furthest_point_sampling_kernel<8>
<<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
break;
case 4:
furthest_point_sampling_kernel<4>
<<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
break;
case 2:
furthest_point_sampling_kernel<2>
<<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
break;
case 1:
furthest_point_sampling_kernel<1>
<<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
break;
default:
furthest_point_sampling_kernel<512>
<<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
}
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
// Modified from
// https://github.com/qiqihaer/3DSSD-pytorch/blob/master/lib/pointnet2/src/sampling_gpu.cu
template <unsigned int block_size>
__global__ void furthest_point_sampling_with_dist_kernel(
int b, int n, int m, const float *__restrict__ dataset,
float *__restrict__ temp, int *__restrict__ idxs) {
// dataset: (B, N, N)
// tmp: (B, N)
// output:
// idx: (B, M)
if (m <= 0)
return;
__shared__ float dists[block_size];
__shared__ int dists_i[block_size];
int batch_index = blockIdx.x;
dataset += batch_index * n * n;
temp += batch_index * n;
idxs += batch_index * m;
int tid = threadIdx.x;
const int stride = block_size;
int old = 0;
if (threadIdx.x == 0)
idxs[0] = old;
__syncthreads();
for (int j = 1; j < m; j++) {
int besti = 0;
float best = -1;
// float x1 = dataset[old * 3 + 0];
// float y1 = dataset[old * 3 + 1];
// float z1 = dataset[old * 3 + 2];
for (int k = tid; k < n; k += stride) {
// float x2, y2, z2;
// x2 = dataset[k * 3 + 0];
// y2 = dataset[k * 3 + 1];
// z2 = dataset[k * 3 + 2];
// float d = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) *
// (z2 - z1);
float d = dataset[old * n + k];
float d2 = min(d, temp[k]);
temp[k] = d2;
besti = d2 > best ? k : besti;
best = d2 > best ? d2 : best;
}
dists[tid] = best;
dists_i[tid] = besti;
__syncthreads();
if (block_size >= 1024) {
if (tid < 512) {
__update(dists, dists_i, tid, tid + 512);
}
__syncthreads();
}
if (block_size >= 512) {
if (tid < 256) {
__update(dists, dists_i, tid, tid + 256);
}
__syncthreads();
}
if (block_size >= 256) {
if (tid < 128) {
__update(dists, dists_i, tid, tid + 128);
}
__syncthreads();
}
if (block_size >= 128) {
if (tid < 64) {
__update(dists, dists_i, tid, tid + 64);
}
__syncthreads();
}
if (block_size >= 64) {
if (tid < 32) {
__update(dists, dists_i, tid, tid + 32);
}
__syncthreads();
}
if (block_size >= 32) {
if (tid < 16) {
__update(dists, dists_i, tid, tid + 16);
}
__syncthreads();
}
if (block_size >= 16) {
if (tid < 8) {
__update(dists, dists_i, tid, tid + 8);
}
__syncthreads();
}
if (block_size >= 8) {
if (tid < 4) {
__update(dists, dists_i, tid, tid + 4);
}
__syncthreads();
}
if (block_size >= 4) {
if (tid < 2) {
__update(dists, dists_i, tid, tid + 2);
}
__syncthreads();
}
if (block_size >= 2) {
if (tid < 1) {
__update(dists, dists_i, tid, tid + 1);
}
__syncthreads();
}
old = dists_i[0];
if (tid == 0)
idxs[j] = old;
}
}
void furthest_point_sampling_with_dist_kernel_launcher(int b, int n, int m,
const float *dataset,
float *temp, int *idxs,
cudaStream_t stream) {
// dataset: (B, N, N)
// temp: (B, N)
// output:
// idx: (B, M)
cudaError_t err;
unsigned int n_threads = opt_n_threads(n);
switch (n_threads) {
case 1024:
furthest_point_sampling_with_dist_kernel<1024><<<b, n_threads, 0, stream>>>(
b, n, m, dataset, temp, idxs);
break;
case 512:
furthest_point_sampling_with_dist_kernel<512><<<b, n_threads, 0, stream>>>(
b, n, m, dataset, temp, idxs);
break;
case 256:
furthest_point_sampling_with_dist_kernel<256><<<b, n_threads, 0, stream>>>(
b, n, m, dataset, temp, idxs);
break;
case 128:
furthest_point_sampling_with_dist_kernel<128><<<b, n_threads, 0, stream>>>(
b, n, m, dataset, temp, idxs);
break;
case 64:
furthest_point_sampling_with_dist_kernel<64><<<b, n_threads, 0, stream>>>(
b, n, m, dataset, temp, idxs);
break;
case 32:
furthest_point_sampling_with_dist_kernel<32><<<b, n_threads, 0, stream>>>(
b, n, m, dataset, temp, idxs);
break;
case 16:
furthest_point_sampling_with_dist_kernel<16><<<b, n_threads, 0, stream>>>(
b, n, m, dataset, temp, idxs);
break;
case 8:
furthest_point_sampling_with_dist_kernel<8><<<b, n_threads, 0, stream>>>(
b, n, m, dataset, temp, idxs);
break;
case 4:
furthest_point_sampling_with_dist_kernel<4><<<b, n_threads, 0, stream>>>(
b, n, m, dataset, temp, idxs);
break;
case 2:
furthest_point_sampling_with_dist_kernel<2><<<b, n_threads, 0, stream>>>(
b, n, m, dataset, temp, idxs);
break;
case 1:
furthest_point_sampling_with_dist_kernel<1><<<b, n_threads, 0, stream>>>(
b, n, m, dataset, temp, idxs);
break;
default:
furthest_point_sampling_with_dist_kernel<512><<<b, n_threads, 0, stream>>>(
b, n, m, dataset, temp, idxs);
}
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
# Copyright (c) OpenMMLab. All rights reserved.
import torch
def calc_square_dist(point_feat_a, point_feat_b, norm=True):
"""Calculating square distance between a and b.
Args:
point_feat_a (Tensor): (B, N, C) Feature vector of each point.
point_feat_b (Tensor): (B, M, C) Feature vector of each point.
norm (Bool, optional): Whether to normalize the distance.
Default: True.
Returns:
Tensor: (B, N, M) Distance between each pair points.
"""
length_a = point_feat_a.shape[1]
length_b = point_feat_b.shape[1]
num_channel = point_feat_a.shape[-1]
# [bs, n, 1]
a_square = torch.sum(point_feat_a.unsqueeze(dim=2).pow(2), dim=-1)
# [bs, 1, m]
b_square = torch.sum(point_feat_b.unsqueeze(dim=1).pow(2), dim=-1)
a_square = a_square.repeat((1, 1, length_b)) # [bs, n, m]
b_square = b_square.repeat((1, length_a, 1)) # [bs, n, m]
coor = torch.matmul(point_feat_a, point_feat_b.transpose(1, 2))
dist = a_square + b_square - 2 * coor
if norm:
dist = torch.sqrt(dist) / num_channel
return dist
# Copyright (c) OpenMMLab. All rights reserved.
from .gather_points import gather_points
__all__ = ['gather_points']
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch.autograd import Function
from . import gather_points_ext
class GatherPoints(Function):
"""Gather Points.
Gather points with given index.
"""
@staticmethod
def forward(ctx, features: torch.Tensor,
indices: torch.Tensor) -> torch.Tensor:
"""forward.
Args:
features (Tensor): (B, C, N) features to gather.
indices (Tensor): (B, M) where M is the number of points.
Returns:
Tensor: (B, C, M) where M is the number of points.
"""
assert features.is_contiguous()
assert indices.is_contiguous()
B, npoint = indices.size()
_, C, N = features.size()
output = features.new_zeros((B, C, npoint))
gather_points_ext.gather_points_wrapper(B, C, N, npoint, features,
indices, output)
ctx.for_backwards = (indices, C, N)
ctx.mark_non_differentiable(indices)
return output
@staticmethod
def backward(ctx, grad_out):
idx, C, N = ctx.for_backwards
B, npoint = idx.size()
grad_features = grad_out.new_zeros((B, C, N))
grad_out_data = grad_out.data.contiguous()
gather_points_ext.gather_points_grad_wrapper(B, C, N, npoint,
grad_out_data, idx,
grad_features.data)
return grad_features, None
gather_points = GatherPoints.apply
#include <ATen/cuda/CUDAContext.h>
#include <ATen/TensorUtils.h>
#include <THC/THC.h>
#include <torch/extension.h>
#include <torch/serialize/tensor.h>
#include <vector>
extern THCState *state;
int gather_points_wrapper(int b, int c, int n, int npoints,
at::Tensor& points_tensor, at::Tensor& idx_tensor,
at::Tensor& out_tensor);
void gather_points_kernel_launcher(int b, int c, int n, int npoints,
const at::Tensor& points_tensor,
const at::Tensor& idx_tensor,
at::Tensor& out_tensor);
int gather_points_grad_wrapper(int b, int c, int n, int npoints,
at::Tensor& grad_out_tensor,
at::Tensor& idx_tensor,
at::Tensor& grad_points_tensor);
void gather_points_grad_kernel_launcher(int b, int c, int n, int npoints,
const at::Tensor& grad_out_tensor,
const at::Tensor& idx_tensor,
at::Tensor& grad_points_tensor);
int gather_points_wrapper(int b, int c, int n, int npoints,
at::Tensor& points_tensor, at::Tensor& idx_tensor,
at::Tensor& out_tensor)
{
gather_points_kernel_launcher(b, c, n, npoints, points_tensor, idx_tensor, out_tensor);
return 1;
}
int gather_points_grad_wrapper(int b, int c, int n, int npoints,
at::Tensor& grad_out_tensor,
at::Tensor& idx_tensor,
at::Tensor& grad_points_tensor)
{
gather_points_grad_kernel_launcher(b, c, n, npoints, grad_out_tensor, idx_tensor,
grad_points_tensor);
return 1;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
m.def("gather_points_wrapper", &gather_points_wrapper,
"gather_points_wrapper");
m.def("gather_points_grad_wrapper", &gather_points_grad_wrapper,
"gather_points_grad_wrapper");
}
#include <stdio.h>
#include <stdlib.h>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <torch/types.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#define TOTAL_THREADS 1024
#define THREADS_PER_BLOCK 256
#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
template <typename scalar_t>
__global__ void gather_points_kernel(int b, int c, int n, int m,
const scalar_t *__restrict__ points,
const int *__restrict__ idx,
scalar_t *__restrict__ out) {
// points: (B, C, N)
// idx: (B, M)
// output:
// out: (B, C, M)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;
out += bs_idx * c * m + c_idx * m + pt_idx;
idx += bs_idx * m + pt_idx;
points += bs_idx * c * n + c_idx * n;
out[0] = points[idx[0]];
}
void gather_points_kernel_launcher(int b, int c, int n, int npoints,
const at::Tensor& points_tensor,
const at::Tensor& idx_tensor,
at::Tensor& out_tensor)
{
// points: (B, C, N)
// idx: (B, npoints)
// output:
// out: (B, C, npoints)
cudaError_t err;
dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c,
b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
out_tensor.scalar_type(), "gather_points_kernel",
[&]
{
const scalar_t *points = points_tensor.data_ptr<scalar_t>();
const int *idx = idx_tensor.data_ptr<int>();
scalar_t *out = out_tensor.data_ptr<scalar_t>();
gather_points_kernel<<<blocks, threads, 0, stream>>>(b, c, n, npoints, points,
idx, out);
});
err = cudaGetLastError();
if (cudaSuccess != err)
{
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
template <typename scalar_t>
__global__ void gather_points_grad_kernel(int b, int c, int n, int m,
const scalar_t *__restrict__ grad_out,
const int *__restrict__ idx,
scalar_t *__restrict__ grad_points) {
// grad_out: (B, C, M)
// idx: (B, M)
// output:
// grad_points: (B, C, N)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;
grad_out += bs_idx * c * m + c_idx * m + pt_idx;
idx += bs_idx * m + pt_idx;
grad_points += bs_idx * c * n + c_idx * n;
atomicAdd(grad_points + idx[0], grad_out[0]);
}
void gather_points_grad_kernel_launcher(int b, int c, int n, int npoints,
const at::Tensor& grad_out_tensor,
const at::Tensor& idx_tensor,
at::Tensor& grad_points_tensor)
{
// grad_out: (B, C, npoints)
// idx: (B, npoints)
// output:
// grad_points: (B, C, N)
cudaError_t err;
dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c,
b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
grad_points_tensor.scalar_type(), "gather_points_grad_kernel",
[&]
{
const scalar_t *grad_out = grad_out_tensor.data_ptr<scalar_t>();
const int *idx = idx_tensor.data_ptr<int>();
scalar_t *grad_points = grad_points_tensor.data_ptr<scalar_t>();
gather_points_grad_kernel<scalar_t><<<blocks, threads, 0, stream>>>(
b, c, n, npoints, grad_out, idx, grad_points);
});
err = cudaGetLastError();
if (cudaSuccess != err)
{
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
# Copyright (c) OpenMMLab. All rights reserved.
from .group_points import GroupAll, QueryAndGroup, grouping_operation
__all__ = ['QueryAndGroup', 'GroupAll', 'grouping_operation']
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple
import torch
from mmcv.runner import force_fp32
from torch import nn as nn
from torch.autograd import Function
from ..ball_query import ball_query
from ..knn import knn
from . import group_points_ext
class QueryAndGroup(nn.Module):
"""Query and Group.
Groups with a ball query of radius
Args:
max_radius (float): The maximum radius of the balls.
If None is given, we will use kNN sampling instead of ball query.
sample_num (int): Maximum number of features to gather in the ball.
min_radius (float, optional): The minimum radius of the balls.
Default: 0.
use_xyz (bool, optional): Whether to use xyz.
Default: True.
return_grouped_xyz (bool, optional): Whether to return grouped xyz.
Default: False.
normalize_xyz (bool, optional): Whether to normalize xyz.
Default: False.
uniform_sample (bool, optional): Whether to sample uniformly.
Default: False
return_unique_cnt (bool, optional): Whether to return the count of
unique samples. Default: False.
return_grouped_idx (bool, optional): Whether to return grouped idx.
Default: False.
"""
def __init__(self,
max_radius,
sample_num,
min_radius=0,
use_xyz=True,
return_grouped_xyz=False,
normalize_xyz=False,
uniform_sample=False,
return_unique_cnt=False,
return_grouped_idx=False):
super(QueryAndGroup, self).__init__()
self.max_radius = max_radius
self.min_radius = min_radius
self.sample_num = sample_num
self.use_xyz = use_xyz
self.return_grouped_xyz = return_grouped_xyz
self.normalize_xyz = normalize_xyz
self.uniform_sample = uniform_sample
self.return_unique_cnt = return_unique_cnt
self.return_grouped_idx = return_grouped_idx
if self.return_unique_cnt:
assert self.uniform_sample, \
'uniform_sample should be True when ' \
'returning the count of unique samples'
if self.max_radius is None:
assert not self.normalize_xyz, \
'can not normalize grouped xyz when max_radius is None'
self.fp16_enabled = False
@force_fp32()
def forward(self, points_xyz, center_xyz, features=None):
"""forward.
Args:
points_xyz (Tensor): (B, N, 3) xyz coordinates of the features.
center_xyz (Tensor): (B, npoint, 3) Centriods.
features (Tensor): (B, C, N) Descriptors of the features.
Return:
Tensor: (B, 3 + C, npoint, sample_num) Grouped feature.
"""
# if self.max_radius is None, we will perform kNN instead of ball query
# idx is of shape [B, npoint, sample_num]
if self.max_radius is None:
idx = knn(self.sample_num, points_xyz, center_xyz, False)
idx = idx.transpose(1, 2).contiguous()
else:
idx = ball_query(self.min_radius, self.max_radius, self.sample_num,
points_xyz, center_xyz)
if self.uniform_sample:
unique_cnt = torch.zeros((idx.shape[0], idx.shape[1]))
for i_batch in range(idx.shape[0]):
for i_region in range(idx.shape[1]):
unique_ind = torch.unique(idx[i_batch, i_region, :])
num_unique = unique_ind.shape[0]
unique_cnt[i_batch, i_region] = num_unique
sample_ind = torch.randint(
0,
num_unique, (self.sample_num - num_unique, ),
dtype=torch.long)
all_ind = torch.cat((unique_ind, unique_ind[sample_ind]))
idx[i_batch, i_region, :] = all_ind
xyz_trans = points_xyz.transpose(1, 2).contiguous()
# (B, 3, npoint, sample_num)
grouped_xyz = grouping_operation(xyz_trans, idx)
grouped_xyz_diff = grouped_xyz - \
center_xyz.transpose(1, 2).unsqueeze(-1) # relative offsets
if self.normalize_xyz:
grouped_xyz_diff /= self.max_radius
if features is not None:
grouped_features = grouping_operation(features, idx)
if self.use_xyz:
# (B, C + 3, npoint, sample_num)
new_features = torch.cat([grouped_xyz_diff, grouped_features],
dim=1)
else:
new_features = grouped_features
else:
assert (self.use_xyz
), 'Cannot have not features and not use xyz as a feature!'
new_features = grouped_xyz_diff
ret = [new_features]
if self.return_grouped_xyz:
ret.append(grouped_xyz)
if self.return_unique_cnt:
ret.append(unique_cnt)
if self.return_grouped_idx:
ret.append(idx)
if len(ret) == 1:
return ret[0]
else:
return tuple(ret)
class GroupAll(nn.Module):
"""Group All.
Group xyz with feature.
Args:
use_xyz (bool): Whether to use xyz.
"""
def __init__(self, use_xyz: bool = True):
super().__init__()
self.use_xyz = use_xyz
self.fp16_enabled = False
@force_fp32()
def forward(self,
xyz: torch.Tensor,
new_xyz: torch.Tensor,
features: torch.Tensor = None):
"""forward.
Args:
xyz (Tensor): (B, N, 3) xyz coordinates of the features.
new_xyz (Tensor): Ignored.
features (Tensor): (B, C, N) features to group.
Return:
Tensor: (B, C + 3, 1, N) Grouped feature.
"""
grouped_xyz = xyz.transpose(1, 2).unsqueeze(2)
if features is not None:
grouped_features = features.unsqueeze(2)
if self.use_xyz:
new_features = torch.cat([grouped_xyz, grouped_features],
dim=1) # (B, 3 + C, 1, N)
else:
new_features = grouped_features
else:
new_features = grouped_xyz
return new_features
class GroupingOperation(Function):
"""Grouping Operation.
Group feature with given index.
"""
@staticmethod
def forward(ctx, features: torch.Tensor,
indices: torch.Tensor) -> torch.Tensor:
"""forward.
Args:
features (Tensor): (B, C, N) tensor of features to group.
indices (Tensor): (B, npoint, nsample) the indices of
features to group with.
Returns:
Tensor: (B, C, npoint, nsample) Grouped features.
"""
assert features.is_contiguous()
assert indices.is_contiguous()
B, nfeatures, nsample = indices.size()
_, C, N = features.size()
output = torch.cuda.FloatTensor(B, C, nfeatures, nsample)
group_points_ext.forward(B, C, N, nfeatures, nsample, features,
indices, output)
ctx.for_backwards = (indices, N)
return output
@staticmethod
def backward(ctx,
grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""backward.
Args:
grad_out (Tensor): (B, C, npoint, nsample) tensor of the gradients
of the output from forward.
Returns:
Tensor: (B, C, N) gradient of the features.
"""
idx, N = ctx.for_backwards
B, C, npoint, nsample = grad_out.size()
grad_features = torch.cuda.FloatTensor(B, C, N).zero_()
grad_out_data = grad_out.data.contiguous()
group_points_ext.backward(B, C, N, npoint, nsample, grad_out_data, idx,
grad_features.data)
return grad_features, None
grouping_operation = GroupingOperation.apply
// Modified from
// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/group_points.cpp
#include <THC/THC.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <torch/extension.h>
#include <torch/serialize/tensor.h>
#include <vector>
extern THCState *state;
int group_points_wrapper(int b, int c, int n, int npoints, int nsample,
at::Tensor points_tensor, at::Tensor idx_tensor,
at::Tensor out_tensor);
void group_points_kernel_launcher(int b, int c, int n, int npoints, int nsample,
const float *points, const int *idx,
float *out, cudaStream_t stream);
int group_points_grad_wrapper(int b, int c, int n, int npoints, int nsample,
at::Tensor grad_out_tensor, at::Tensor idx_tensor,
at::Tensor grad_points_tensor);
void group_points_grad_kernel_launcher(int b, int c, int n, int npoints,
int nsample, const float *grad_out,
const int *idx, float *grad_points,
cudaStream_t stream);
int group_points_grad_wrapper(int b, int c, int n, int npoints, int nsample,
at::Tensor grad_out_tensor, at::Tensor idx_tensor,
at::Tensor grad_points_tensor) {
float *grad_points = grad_points_tensor.data_ptr<float>();
const int *idx = idx_tensor.data_ptr<int>();
const float *grad_out = grad_out_tensor.data_ptr<float>();
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
group_points_grad_kernel_launcher(b, c, n, npoints, nsample, grad_out, idx,
grad_points, stream);
return 1;
}
int group_points_wrapper(int b, int c, int n, int npoints, int nsample,
at::Tensor points_tensor, at::Tensor idx_tensor,
at::Tensor out_tensor) {
const float *points = points_tensor.data_ptr<float>();
const int *idx = idx_tensor.data_ptr<int>();
float *out = out_tensor.data_ptr<float>();
cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream();
group_points_kernel_launcher(b, c, n, npoints, nsample, points, idx, out,
stream);
return 1;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &group_points_wrapper, "group_points_wrapper");
m.def("backward", &group_points_grad_wrapper, "group_points_grad_wrapper");
}
// Modified from
// https://github.com/sshaoshuai/Pointnet2.PyTorch/tree/master/pointnet2/src/group_points_gpu.cu
#include <stdio.h>
#include <stdlib.h>
#define THREADS_PER_BLOCK 256
#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
__global__ void group_points_grad_kernel(int b, int c, int n, int npoints,
int nsample,
const float *__restrict__ grad_out,
const int *__restrict__ idx,
float *__restrict__ grad_points) {
// grad_out: (B, C, npoints, nsample)
// idx: (B, npoints, nsample)
// output:
// grad_points: (B, C, N)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int index = blockIdx.x * blockDim.x + threadIdx.x;
int pt_idx = index / nsample;
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
int sample_idx = index % nsample;
grad_out += bs_idx * c * npoints * nsample + c_idx * npoints * nsample +
pt_idx * nsample + sample_idx;
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
atomicAdd(grad_points + bs_idx * c * n + c_idx * n + idx[0], grad_out[0]);
}
void group_points_grad_kernel_launcher(int b, int c, int n, int npoints,
int nsample, const float *grad_out,
const int *idx, float *grad_points,
cudaStream_t stream) {
// grad_out: (B, C, npoints, nsample)
// idx: (B, npoints, nsample)
// output:
// grad_points: (B, C, N)
cudaError_t err;
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c,
b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
group_points_grad_kernel<<<blocks, threads, 0, stream>>>(
b, c, n, npoints, nsample, grad_out, idx, grad_points);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void group_points_kernel(int b, int c, int n, int npoints,
int nsample,
const float *__restrict__ points,
const int *__restrict__ idx,
float *__restrict__ out) {
// points: (B, C, N)
// idx: (B, npoints, nsample)
// output:
// out: (B, C, npoints, nsample)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int index = blockIdx.x * blockDim.x + threadIdx.x;
int pt_idx = index / nsample;
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
int sample_idx = index % nsample;
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
int in_idx = bs_idx * c * n + c_idx * n + idx[0];
int out_idx = bs_idx * c * npoints * nsample + c_idx * npoints * nsample +
pt_idx * nsample + sample_idx;
out[out_idx] = points[in_idx];
}
void group_points_kernel_launcher(int b, int c, int n, int npoints, int nsample,
const float *points, const int *idx,
float *out, cudaStream_t stream) {
// points: (B, C, N)
// idx: (B, npoints, nsample)
// output:
// out: (B, C, npoints, nsample)
cudaError_t err;
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c,
b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
group_points_kernel<<<blocks, threads, 0, stream>>>(b, c, n, npoints, nsample,
points, idx, out);
// cudaDeviceSynchronize(); // for using printf in kernel function
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment