In this version, we make large refactoring based on MMEngine to achieve unified data elements, model interfaces, visualizers, evaluators and other runtime modules across different datasets, tasks and even codebases. A brief summary for this refactoring is as follows:
- Data Element:
- We add [`Det3DDataSample`](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/mmdet3d/structures/det3d_data_sample.py) as the common data element passing through datasets and models. It inherits from [`DetDataSample`]([https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/mmdet3d/structures/det3d_data_sample.py](https://github.com/open-mmlab/mmdetection/blob/dev-3.x/mmdet/structures/det_data_sample.py)) in mmdetection and implement ``InstanceData``, ``PixelData``, and
``LabelData`` inheriting from ``BaseDataElement`` in MMEngine to represent different types of ground truth labels or predictions.
- We add [`Det3DDataSample`](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/mmdet3d/structures/det3d_data_sample.py) as the common data element passing through datasets and models. It inherits from [`DetDataSample`](<%5Bhttps://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/mmdet3d/structures/det3d_data_sample.py%5D(https://github.com/open-mmlab/mmdetection/blob/dev-3.x/mmdet/structures/det_data_sample.py)>) in mmdetection and implement `InstanceData`, `PixelData`, and
`LabelData` inheriting from `BaseDataElement` in MMEngine to represent different types of ground truth labels or predictions.
- Datasets:
- We add [`Det3DDataset`](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/mmdet3d/datasets/det3d_dataset.py) and [`Seg3DDataset`](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/mmdet3d/datasets/seg3d_dataset.py) as the base datasets to inherit from the unified `BaseDataset` in MMEngine. They implement most functions that are commonly used across different datasets and simplify the info loading/processing in the current datasets. Re-defined input arguments and functions can be most re-used in different datasets, which are important for the implementation of customized datasets.
- We define the common keys across different datasets and unify all the info files with a standard protocol. The same info is more clear for users because they share the same key across different dataset infos. Besides, for different settings, such as camera-only and LiDAR-only methods, we no longer need different info formats (like the previous pkl and json files). We can just revise the `parse_data_info` to read the necessary information from a complete info file.