@@ -3,10 +3,14 @@ We follow the procedure in [votenet](https://github.com/facebookresearch/votenet
...
@@ -3,10 +3,14 @@ We follow the procedure in [votenet](https://github.com/facebookresearch/votenet
1. Download ScanNet v2 data [HERE](https://github.com/ScanNet/ScanNet). Link or move the 'scans' folder to this level of directory.
1. Download ScanNet v2 data [HERE](https://github.com/ScanNet/ScanNet). Link or move the 'scans' folder to this level of directory.
2. In this level of directory, extract point clouds and annotations by running `python batch_load_scannet_data.py`.
2. In this directory, extract point clouds and annotations by running `python batch_load_scannet_data.py`.
3. Enter the project root directory, generate training data by running `python tools/create_data.py scannet --root-path ./data/scannet --out-dir ./data/scannet --extra-tag scannet`.
3. Enter the project root directory, generate training data by running
@@ -5,14 +5,17 @@ We follow the procedure in [votenet](https://github.com/facebookresearch/votenet
...
@@ -5,14 +5,17 @@ We follow the procedure in [votenet](https://github.com/facebookresearch/votenet
2. Enter the `matlab` folder, Extract point clouds and annotations by running `extract_split.m`, `extract_rgbd_data_v2.m` and `extract_rgbd_data_v1.m`.
2. Enter the `matlab` folder, Extract point clouds and annotations by running `extract_split.m`, `extract_rgbd_data_v2.m` and `extract_rgbd_data_v1.m`.
3. Back to this level of directory, prepare data by running `python sunrgbd_data.py --gen_v1_data`.
3. Back to this directory, prepare data by running `python sunrgbd_data.py --gen_v1_data`.
4. Enter the project root directory, Generate training data by running `python tools/create_data.py sunrgbd --root-path ./data/sunrgbd --out-dir ./data/sunrgbd --extra-tag sunrgbd`.
4. Enter the project root directory, Generate training data by running
NOTE: SUNRGBDtoolbox.zip should have MD5 hash `18d22e1761d36352f37232cba102f91f` (you can check the hash with `md5 SUNRGBDtoolbox.zip` on Mac OS or `md5sum SUNRGBDtoolbox.zip` on Linux)
NOTE: SUNRGBDtoolbox.zip should have MD5 hash `18d22e1761d36352f37232cba102f91f` (you can check the hash with `md5 SUNRGBDtoolbox.zip` on Mac OS or `md5sum SUNRGBDtoolbox.zip` on Linux)
The directory structure after pre-processing should be as below