Commit 1d005956 authored by zhangwenwei's avatar zhangwenwei
Browse files

Update model zoo links and readme

parent 1b952423
import argparse
import glob
import json
import os.path as osp
import shutil
import subprocess
import mmcv
import torch
# build schedule look-up table to automatically find the final model
SCHEDULES_LUT = {
'_1x_': 12,
'_2x_': 24,
'_20e_': 20,
'_3x_': 36,
'_4x_': 48,
'_24e_': 24,
'_6x_': 73
}
# TODO: add support for lyft dataset
RESULTS_LUT = {
'coco': ['bbox_mAP', 'segm_mAP'],
'nus': ['pts_bbox_NuScenes/NDS', 'NDS'],
'kitti-3d-3class': [
'KITTI/Overall_3D_moderate',
'Overall_3D_moderate',
],
'kitti-3d-car': ['KITTI/Car_3D_moderate_strict', 'Car_3D_moderate_strict'],
'lyft': ['score'],
'scannet': ['mAR_0.50'],
'sunrgbd': ['mAR_0.50']
}
def get_model_dataset(log_json_path):
for key in RESULTS_LUT:
if log_json_path.find(key) != -1:
return key
def process_checkpoint(in_file, out_file):
checkpoint = torch.load(in_file, map_location='cpu')
# remove optimizer for smaller file size
if 'optimizer' in checkpoint:
del checkpoint['optimizer']
# if it is necessary to remove some sensitive data in checkpoint['meta'],
# add the code here.
torch.save(checkpoint, out_file)
sha = subprocess.check_output(['sha256sum', out_file]).decode()
final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
subprocess.Popen(['mv', out_file, final_file])
return final_file
def get_final_epoch(config):
if config.find('grid_rcnn') != -1 and config.find('2x') != -1:
# grid_rcnn 2x trains 25 epochs
return 25
for schedule_name, epoch_num in SCHEDULES_LUT.items():
if config.find(schedule_name) != -1:
return epoch_num
def get_best_results(log_json_path):
dataset = get_model_dataset(log_json_path)
max_dict = dict()
max_memory = 0
with open(log_json_path, 'r') as f:
for line in f.readlines():
log_line = json.loads(line)
if 'mode' not in log_line.keys():
continue
# record memory and find best results & epochs
if log_line['mode'] == 'train' \
and max_memory <= log_line['memory']:
max_memory = log_line['memory']
elif log_line['mode'] == 'val':
result_dict = {
key: log_line[key]
for key in RESULTS_LUT[dataset] if key in log_line
}
if len(max_dict) == 0:
max_dict = result_dict
max_dict['epoch'] = log_line['epoch']
elif all(
[max_dict[key] <= result_dict[key]
for key in result_dict]):
max_dict.update(result_dict)
max_dict['epoch'] = log_line['epoch']
max_dict['memory'] = max_memory
return max_dict
def parse_args():
parser = argparse.ArgumentParser(description='Gather benchmarked models')
parser.add_argument(
'root',
type=str,
help='root path of benchmarked models to be gathered')
parser.add_argument(
'out', type=str, help='output path of gathered models to be stored')
args = parser.parse_args()
return args
def main():
args = parse_args()
models_root = args.root
models_out = args.out
mmcv.mkdir_or_exist(models_out)
# find all models in the root directory to be gathered
raw_configs = list(mmcv.scandir('./configs', '.py', recursive=True))
# filter configs that is not trained in the experiments dir
used_configs = []
for raw_config in raw_configs:
if osp.exists(osp.join(models_root, raw_config)):
used_configs.append(raw_config)
print(f'Find {len(used_configs)} models to be gathered')
# find final_ckpt and log file for trained each config
# and parse the best performance
model_infos = []
for used_config in used_configs:
exp_dir = osp.join(models_root, used_config)
# get logs
log_json_path = glob.glob(osp.join(exp_dir, '*.log.json'))[0]
log_txt_path = glob.glob(osp.join(exp_dir, '*.log'))[0]
model_performance = get_best_results(log_json_path)
final_epoch = model_performance['epoch']
final_model = 'epoch_{}.pth'.format(final_epoch)
model_path = osp.join(exp_dir, final_model)
# skip if the model is still training
if not osp.exists(model_path):
print(f'Expected {model_path} does not exist!')
continue
if model_performance is None:
print(f'Obtained no performance for model {used_config}')
continue
model_time = osp.split(log_txt_path)[-1].split('.')[0]
model_infos.append(
dict(
config=used_config,
results=model_performance,
epochs=final_epoch,
model_time=model_time,
log_json_path=osp.split(log_json_path)[-1]))
# publish model for each checkpoint
publish_model_infos = []
for model in model_infos:
model_publish_dir = osp.join(models_out, model['config'].rstrip('.py'))
mmcv.mkdir_or_exist(model_publish_dir)
model_name = model_publish_dir + '_' + model['model_time']
publish_model_path = osp.join(model_publish_dir, model_name)
trained_model_path = osp.join(models_root, model['config'],
'epoch_{}.pth'.format(model['epochs']))
# convert model
final_model_path = process_checkpoint(trained_model_path,
publish_model_path)
# copy log
shutil.copy(
osp.join(models_root, model['config'], model['log_json_path']),
osp.join(model_publish_dir, f'{model_name}.log.json'))
shutil.copy(
osp.join(models_root, model['config'],
model['log_json_path'].rstrip('.json')),
osp.join(model_publish_dir, f'{model_name}.log'))
# copy config to guarantee reproducibility
config_path = model['config']
config_path = osp.join(
'configs',
config_path) if 'configs' not in config_path else config_path
target_cconfig_path = osp.split(config_path)[-1]
shutil.copy(config_path,
osp.join(model_publish_dir, target_cconfig_path))
model['model_path'] = final_model_path
publish_model_infos.append(model)
models = dict(models=publish_model_infos)
print(f'Totally gathered {len(publish_model_infos)} models')
mmcv.dump(models, osp.join(models_out, 'model_info.json'))
if __name__ == '__main__':
main()
...@@ -49,17 +49,17 @@ Results and models are available in the [model zoo](docs/model_zoo.md). ...@@ -49,17 +49,17 @@ Results and models are available in the [model zoo](docs/model_zoo.md).
| | ResNet | ResNeXt | SENet |PointNet++ | HRNet | RegNetX | Res2Net | | | ResNet | ResNeXt | SENet |PointNet++ | HRNet | RegNetX | Res2Net |
|--------------------|:--------:|:--------:|:--------:|:---------:|:-----:|:--------:|:-----:| |--------------------|:--------:|:--------:|:--------:|:---------:|:-----:|:--------:|:-----:|
| SECOND | ☐ | ☐ | ☐ | ✗ | | ✓ | ☐ | | SECOND | ☐ | ☐ | ☐ | ✗ | | ✓ | ☐ |
| PointPillars | ☐ | ☐ | ☐ | ✗ | | ✓ | ☐ | | PointPillars | ☐ | ☐ | ☐ | ✗ | | ✓ | ☐ |
| FreeAnchor | ☐ | ☐ | ☐ | ✗ | | ✓ | ☐ | | FreeAnchor | ☐ | ☐ | ☐ | ✗ | | ✓ | ☐ |
| VoteNet | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | | VoteNet | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| Part-A2 | ☐ | ☐ | ☐ | ✗ | | ✓ | ☐ | | Part-A2 | ☐ | ☐ | ☐ | ✗ | | ✓ | ☐ |
| MVXNet | ☐ | ☐ | ☐ | ✗ | | ✓ | ☐ | | MVXNet | ☐ | ☐ | ☐ | ✗ | | ✓ | ☐ |
Other features Other features
- [x] [Dynamic Voxelization](configs/carafe/README.md) - [x] [Dynamic Voxelization](configs/carafe/README.md)
**Notice**: All the models or modules supported in [MMDetection's model zoo](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) can be trained or used in this codebase. All the about **300 models, 40+ papers**, and modules supported in [MMDetection's model zoo](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) can be trained or used in this codebase.
## Installation ## Installation
......
...@@ -21,6 +21,6 @@ We implement Dynamic Voxelization proposed in and provide its results and model ...@@ -21,6 +21,6 @@ We implement Dynamic Voxelization proposed in and provide its results and model
| Model |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | | Model |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :---------: | :-----: |:-----: | :------: | :------------: | :----: | :------: | | :---------: | :-----: |:-----: | :------: | :------------: | :----: | :------: |
|[SECOND](./dv_second_secfpn_6x8_80e_kitti-3d-car.py)|Car |cyclic 80e|5.5||78.83|| |[SECOND](./dv_second_secfpn_6x8_80e_kitti-3d-car.py)|Car |cyclic 80e|5.5||78.83|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/)|
|[SECOND](./dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py)| 3 Class|cosine 80e|5.5||65.10|| |[SECOND](./dv_second_secfpn_2x8_cosine_80e_kitti-3d-3class.py)| 3 Class|cosine 80e|5.5||65.10|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/)|
|[PointPillars](./dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py)| Car|cyclic 80e|4.7||77.76|| |[PointPillars](./dv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py)| Car|cyclic 80e|4.7||77.76|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/)|
...@@ -80,9 +80,13 @@ train_cfg = dict( ...@@ -80,9 +80,13 @@ train_cfg = dict(
| Backbone |FreeAnchor|Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download | | Backbone |FreeAnchor|Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download |
| :---------: |:-----: |:-----: | :------: | :------------: | :----: |:----: | :------: | | :---------: |:-----: |:-----: | :------: | :------------: | :----: |:----: | :------: |
|[FPN](../pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py)|✗|2x|17.1||40.0|53.3|| |[FPN](../pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py)|✗|2x|17.1||40.0|53.3|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405.log.json)|
|[FPN](./hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py)|✓|2x|||43.7|55.1|| |[FPN](./hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py)|✓|2x|16.2||43.7|55.3|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20200628_210537-09d359fc.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20200628_210537.log.json)|
|[RegNetX-400MF-FPN](../regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py)|✗|2x|17.3||44.8|56.4|| |[RegNetX-400MF-FPN](../regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py)|✗|2x|17.3||44.8|56.4|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239-c694dce7.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239.log.json)|
|[RegNetX-400MF-FPN](./hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py)|✓|2x|||||| |[RegNetX-400MF-FPN](./hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py)|✓|2x|17.7||47.9|58.6|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20200629_050311-a334765d.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20200629_050311.log.json)|
|[RegNetX-1.6GF-FPN](./hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py)|✓|2x|||||| |[RegNetX-1.6GF-FPN](./hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py)|✓|2x|24.3||51.2|60.8|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20200629_105446-6ffa59cb.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20200629_105446.log.json)|
|[RegNetX-3.2GF-FPN](./hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py)|✓|2x|||||| |[RegNetX-1.6GF-FPN](./hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py)*|✓|3x|24.3|53.0|62.2|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d_20200701_201531-036f7de3.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d_20200701_201531.log.json)|
|[RegNetX-3.2GF-FPN](./hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py)|✓|2x|29.5||52.2|62.0|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20200629_055854-658125b0.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_4x8_2x_nus-3d_20200629_055854.log.json)|
|[RegNetX-3.2GF-FPN](./hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d.py)*|✓|3x|29.5||55.09|63.5|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d_20200629_181452-297fdc66.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/free_anchor/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d/hv_pointpillars_regnet-3.2gf_fpn_sbn-all_free-anchor_strong-aug_4x8_3x_nus-3d_20200629_181452.log.json)|
**Note**: Models noted by `*` means it is trained using stronger augmentation with vertical flip under bird-eye-view, global translation, and larger range of global rotation.
_base_ = './hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py'
model = dict(
pretrained=dict(pts='open-mmlab://regnetx_1.6gf'),
pts_backbone=dict(
_delete_=True,
type='NoStemRegNet',
arch='regnetx_1.6gf',
out_indices=(1, 2, 3),
frozen_stages=-1,
strides=(1, 2, 2, 2),
base_channels=64,
stem_channels=64,
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
norm_eval=False,
style='pytorch'),
pts_neck=dict(in_channels=[168, 408, 912]))
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-50, -50, -5, 50, 50, 3]
# For nuScenes we usually do 10-class detection
class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
# file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
file_client_args = dict(
backend='petrel',
path_mapping=dict({
'./data/nuscenes/': 's3://nuscenes/nuscenes/',
'data/nuscenes/': 's3://nuscenes/nuscenes/'
}))
train_pipeline = [
dict(
type='LoadPointsFromFile',
load_dim=5,
use_dim=5,
file_client_args=file_client_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
file_client_args=file_client_args),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.7854, 0.7854],
scale_ratio_range=[0.95, 1.05],
translation_std=[0.2, 0.2, 0.2]),
dict(
type='RandomFlip3D',
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
data = dict(train=dict(pipeline=train_pipeline))
lr_config = dict(step=[28, 34])
evaluation = dict(interval=36)
total_epochs = 36
_base_ = './hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py'
model = dict(
pretrained=dict(pts='open-mmlab://regnetx_3.2gf'),
pts_backbone=dict(
_delete_=True,
type='NoStemRegNet',
arch='regnetx_3.2gf',
out_indices=(1, 2, 3),
frozen_stages=-1,
strides=(1, 2, 2, 2),
base_channels=64,
stem_channels=64,
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
norm_eval=False,
style='pytorch'),
pts_neck=dict(in_channels=[192, 432, 1008]))
_base_ = './hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py'
model = dict(
pretrained=dict(pts='open-mmlab://regnetx_3.2gf'),
pts_backbone=dict(
_delete_=True,
type='NoStemRegNet',
arch='regnetx_3.2gf',
out_indices=(1, 2, 3),
frozen_stages=-1,
strides=(1, 2, 2, 2),
base_channels=64,
stem_channels=64,
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
norm_eval=False,
style='pytorch'),
pts_neck=dict(in_channels=[192, 432, 1008]))
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-50, -50, -5, 50, 50, 3]
# For nuScenes we usually do 10-class detection
class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
# file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
file_client_args = dict(
backend='petrel',
path_mapping=dict({
'./data/nuscenes/': 's3://nuscenes/nuscenes/',
'data/nuscenes/': 's3://nuscenes/nuscenes/'
}))
train_pipeline = [
dict(
type='LoadPointsFromFile',
load_dim=5,
use_dim=5,
file_client_args=file_client_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
file_client_args=file_client_args),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.7854, 0.7854],
scale_ratio_range=[0.9, 1.1],
translation_std=[0.2, 0.2, 0.2]),
dict(
type='RandomFlip3D',
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
data = dict(train=dict(pipeline=train_pipeline))
lr_config = dict(step=[28, 34])
evaluation = dict(interval=36)
total_epochs = 36
_base_ = './hv_pointpillars_fpn_sbn-all_free-anchor_4x8_2x_nus-3d.py'
model = dict(
pretrained=dict(pts='open-mmlab://regnetx_400mf'),
pts_backbone=dict(
_delete_=True,
type='NoStemRegNet',
arch='regnetx_400mf',
out_indices=(1, 2, 3),
frozen_stages=-1,
strides=(1, 2, 2, 2),
base_channels=64,
stem_channels=64,
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
norm_eval=False,
style='pytorch'),
pts_neck=dict(in_channels=[64, 160, 384]))
...@@ -21,4 +21,4 @@ We implement MVX-Net and provide its results and models on KITTI dataset. ...@@ -21,4 +21,4 @@ We implement MVX-Net and provide its results and models on KITTI dataset.
| Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | | Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| [SECFPN](./dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py)|3 Class|cosine 80e|6.7||63.0|| | [SECFPN](./dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py)|3 Class|cosine 80e|6.7||63.0|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20200621_003904-10140f2d.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20200621_003904.log.json)|
...@@ -20,5 +20,5 @@ We implement Part-A^2 and provide its results and checkpoints on KITTI dataset. ...@@ -20,5 +20,5 @@ We implement Part-A^2 and provide its results and checkpoints on KITTI dataset.
| Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP | Download | | Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP | Download |
| :---------: | :-----: |:-----: | :------: | :------------: | :----: |:----: | :------: | | :---------: | :-----: |:-----: | :------: | :------------: | :----: |:----: | :------: |
| [SECFPN](./hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py) |3 Class|cyclic 80e|4.1||67.9|| | [SECFPN](./hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py) |3 Class|cyclic 80e|4.1||67.9|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20200620_230724-a2672098.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class_20200620_230724.log.json)|
| [SECFPN](./hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py) |Car |cyclic 80e|4.0||79.16|| | [SECFPN](./hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py) |Car |cyclic 80e|4.0||79.16|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20200620_230755-f2a38b9a.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car_20200620_230755.log.json)|
...@@ -21,12 +21,12 @@ We implement PointPillars and provide the results and checkpoints on KITTI and n ...@@ -21,12 +21,12 @@ We implement PointPillars and provide the results and checkpoints on KITTI and n
| Backbone|Class | Lr schd | Mem (GB) | Inf time (fps) | AP |Download | | Backbone|Class | Lr schd | Mem (GB) | Inf time (fps) | AP |Download |
| :---------: | :-----: |:-----: | :------: | :------------: | :----: | :------: | | :---------: | :-----: |:-----: | :------: | :------------: | :----: | :------: |
| [SECFPN](./hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py)|Car|cyclic 160e|5.4||77.1|| | [SECFPN](./hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py)|Car|cyclic 160e|5.4||77.1|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20200620_230614-77663cd6.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car/hv_pointpillars_secfpn_6x8_160e_kitti-3d-car_20200620_230614.log.json)|
| [SECFPN](./hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py)|3 Class|cyclic 160e|5.5||59.5| | [SECFPN](./hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py)|3 Class|cyclic 160e|5.5||59.5|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class_20200620_230421-aa0f3adb.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class_20200620_230421.log.json)|
### nuScenes ### nuScenes
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
|[SECFPN](./hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||35.17|49.7|| |[SECFPN](./hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||35.17|49.7|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json)|
|[FPN](./hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||40.0|53.3|| |[FPN](./hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||40.0|53.3|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405.log.json)|
...@@ -51,7 +51,8 @@ For other pre-trained models or self-implemented regnet models, the users are re ...@@ -51,7 +51,8 @@ For other pre-trained models or self-implemented regnet models, the users are re
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | mAP |NDS| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
|[SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||35.17|49.7|| |[SECFPN](../pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py)|2x|16.4||35.17|49.7|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725-0817d270.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230725.log.json)|
|[RegNetX-400MF-SECFPN](./hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py)| 2x |16.4||41.2|55.2|| |[RegNetX-400MF-SECFPN](./hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d.py)| 2x |16.4||41.2|55.2|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334-53044f32.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_secfpn_sbn-all_4x8_2x_nus-3d_20200620_230334.log.json)|
|[FPN](../pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|17.1||40.0|53.3|| |[FPN](../pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|17.1||40.0|53.3|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405-2fa62f3d.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/pointpillars/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d_20200620_230405.log.json)|
|[RegNetX-400MF-FPN](./hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|17.3||44.8|56.4|| |[RegNetX-400MF-FPN](./hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|17.3||44.8|56.4|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239-c694dce7.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-400mf_fpn_sbn-all_4x8_2x_nus-3d_20200620_230239.log.json)|
|[RegNetX-1.6gF-FPN](./hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d.py)|2x|24.0||48.2|59.3|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d_20200629_050311-dcd4e090.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/regnet/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d/hv_pointpillars_regnet-1.6gf_fpn_sbn-all_4x8_2x_nus-3d_20200629_050311.log.json)|
...@@ -18,5 +18,5 @@ We implement SECOND and provide the results and checkpoints on KITTI dataset. ...@@ -18,5 +18,5 @@ We implement SECOND and provide the results and checkpoints on KITTI dataset.
### KITTI ### KITTI
| Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP |Download | | Backbone |Class| Lr schd | Mem (GB) | Inf time (fps) | mAP |Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-car.py)| Car |cyclic 80e|5.4||79.07| | [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-car.py)| Car |cyclic 80e|5.4||79.07|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238.log.json)|
| [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-3class.py)| 3 Class |cyclic 80e|5.4||64.41| | [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-3class.py)| 3 Class |cyclic 80e|5.4||64.41|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238-9208083a.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20200620_230238-9208083a.pth)|
...@@ -16,9 +16,9 @@ We implement VoteNet and provide the result and checkpoints on ScanNet and SUNRG ...@@ -16,9 +16,9 @@ We implement VoteNet and provide the result and checkpoints on ScanNet and SUNRG
### ScanNet ### ScanNet
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 |AP@0.5| Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 |AP@0.5| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| [PointNet++](./votenet_8x8_scannet-3d-18class.py) | 3x |4.1||62.90|39.91|| | [PointNet++](./votenet_8x8_scannet-3d-18class.py) | 3x |4.1||62.90|39.91|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20200620_230238-4483c0c0.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/votenet/votenet_16x8_sunrgbd-3d-10class/votenet_16x8_sunrgbd-3d-10class_20200620_230238.log.json)|
### SUNRGBD ### SUNRGBD
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 |AP@0.5| Download | | Backbone | Lr schd | Mem (GB) | Inf time (fps) | AP@0.25 |AP@0.5| Download |
| :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: | | :---------: | :-----: | :------: | :------------: | :----: |:----: | :------: |
| [PointNet++](./) | 3x |8.1||59.07|35.77|| | [PointNet++](./votenet_16x8_sunrgbd-3d-10class.py) | 3x |8.1||59.07|35.77|[model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth) &#124; [log](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection3d/v0.1.0_models/votenet/votenet_8x8_scannet-3d-18class/votenet_8x8_scannet-3d-18class_20200620_230238.log.json)|
from mmcv.utils import Registry, build_from_cfg, print_log from mmcv.utils import Registry, build_from_cfg, print_log
from mmdet.utils import get_model_complexity_info, get_root_logger from mmdet import get_root_logger
from .collect_env import collect_env from .collect_env import collect_env
__all__ = [ __all__ = [
'Registry', 'build_from_cfg', 'get_model_complexity_info', 'Registry', 'build_from_cfg', 'get_root_logger', 'collect_env', 'print_log'
'get_root_logger', 'collect_env', 'print_log'
] ]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment