"tests/vscode:/vscode.git/clone" did not exist on "5c10e68a1feca15bfdabdbdd24c207af6bc099ce"
Unverified Commit 13f002d7 authored by Wenhao Wu's avatar Wenhao Wu Committed by GitHub
Browse files

[Fix] Fix docs link (#1121)



* [Fix] Fix docs link

* Fix English doc conf link
Co-authored-by: default avatarTai-Wang <tab_wang@outlook.com>
parent 30ad1aae
......@@ -48,11 +48,11 @@ a part of the OpenMMLab project developed by [MMLab](http://mmlab.ie.cuhk.edu.hk
- **Natural integration with 2D detection**
All the about **300+ models, methods of 40+ papers**, and modules supported in [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) can be trained or used in this codebase.
All the about **300+ models, methods of 40+ papers**, and modules supported in [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/en/model_zoo.md) can be trained or used in this codebase.
- **High efficiency**
It trains faster than other codebases. The main results are as below. Details can be found in [benchmark.md](./docs/benchmarks.md). We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by `×`.
It trains faster than other codebases. The main results are as below. Details can be found in [benchmark.md](./docs/en/benchmarks.md). We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by `×`.
| Methods | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) |[votenet](https://github.com/facebookresearch/votenet)| [Det3D](https://github.com/poodarchu/Det3D) |
|:-------:|:-------------:|:---------:|:-----:|:-----:|
......@@ -71,14 +71,14 @@ This project is released under the [Apache 2.0 license](LICENSE).
## Changelog
v0.17.3 was released in 1/12/2021.
Please refer to [changelog.md](docs/changelog.md) for details and release history.
Please refer to [changelog.md](docs/en/changelog.md) for details and release history.
For branch v1.0.0.dev0, please refer to [changelog_v1.0.md](https://github.com/Tai-Wang/mmdetection3d/blob/v1.0.0.dev0-changelog/docs/changelog_v1.0.md) for our latest features and more details.
## Benchmark and model zoo
Supported methods and backbones are shown in the below table.
Results and models are available in the [model zoo](docs/model_zoo.md).
Results and models are available in the [model zoo](docs/en/model_zoo.md).
Support backbones:
......@@ -127,17 +127,17 @@ Support methods
Other features
- [x] [Dynamic Voxelization](configs/dynamic_voxelization/README.md)
**Note:** All the about **300+ models, methods of 40+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) can be trained or used in this codebase.
**Note:** All the about **300+ models, methods of 40+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/en/model_zoo.md) can be trained or used in this codebase.
## Installation
Please refer to [getting_started.md](docs/getting_started.md) for installation.
Please refer to [getting_started.md](docs/en/getting_started.md) for installation.
## Get Started
Please see [getting_started.md](docs/getting_started.md) for the basic usage of MMDetection3D. We provide guidance for quick run [with existing dataset](docs/1_exist_data_model.md) and [with customized dataset](docs/2_new_data_model.md) for beginners. There are also tutorials for [learning configuration systems](docs/tutorials/config.md), [adding new dataset](docs/tutorials/customize_dataset.md), [designing data pipeline](docs/tutorials/data_pipeline.md), [customizing models](docs/tutorials/customize_models.md), [customizing runtime settings](docs/tutorials/customize_runtime.md) and [Waymo dataset](docs/datasets/waymo_det.md).
Please see [getting_started.md](docs/en/getting_started.md) for the basic usage of MMDetection3D. We provide guidance for quick run [with existing dataset](docs/en/1_exist_data_model.md) and [with customized dataset](docs/en/2_new_data_model.md) for beginners. There are also tutorials for [learning configuration systems](docs/en/tutorials/config.md), [adding new dataset](docs/en/tutorials/customize_dataset.md), [designing data pipeline](docs/en/tutorials/data_pipeline.md), [customizing models](docs/en/tutorials/customize_models.md), [customizing runtime settings](docs/en/tutorials/customize_runtime.md) and [Waymo dataset](docs/en/datasets/waymo_det.md).
Please refer to [FAQ](docs/faq.md) for frequently asked questions. When updating the version of MMDetection3D, please also check the [compatibility doc](docs/compatibility.md) to be aware of the BC-breaking updates introduced in each version.
Please refer to [FAQ](docs/en/faq.md) for frequently asked questions. When updating the version of MMDetection3D, please also check the [compatibility doc](docs/en/compatibility.md) to be aware of the BC-breaking updates introduced in each version.
## Citation
......
......@@ -48,11 +48,11 @@ MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱, 下一代
- **与 2D 检测器的自然整合**
[MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) 支持的**300+个模型 , 40+的论文算法**, 和相关模块都可以在此代码库中训练或使用。
[MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/zh_cn/model_zoo.md) 支持的**300+个模型 , 40+的论文算法**, 和相关模块都可以在此代码库中训练或使用。
- **性能高**
训练速度比其他代码库更快。下表可见主要的对比结果。更多的细节可见[基准测评文档](./docs/benchmarks.md)。我们对比了每秒训练的样本数(值越高越好)。其他代码库不支持的模型被标记为 `×`
训练速度比其他代码库更快。下表可见主要的对比结果。更多的细节可见[基准测评文档](./docs/zh_cn/benchmarks.md)。我们对比了每秒训练的样本数(值越高越好)。其他代码库不支持的模型被标记为 `×`
| Methods | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) |[votenet](https://github.com/facebookresearch/votenet)| [Det3D](https://github.com/poodarchu/Det3D) |
|:-------:|:-------------:|:---------:|:-----:|:-----:|
......@@ -71,13 +71,13 @@ MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱, 下一代
## 更新日志
最新的版本 v0.17.3 在 2021.12.01 发布。
如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/changelog.md)
如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/zh_cn/changelog.md)
对于分支 [v1.0.0.dev0](https://github.com/open-mmlab/mmdetection3d/tree/v1.0.0.dev0) ,请参考 [v1.0 更新日志](https://github.com/Tai-Wang/mmdetection3d/blob/v1.0.0.dev0-changelog/docs/changelog_v1.0.md) 来了解我们的最新功能和更多细节。
## 基准测试和模型库
测试结果和模型可以在[模型库](docs/model_zoo.md)中找到。
测试结果和模型可以在[模型库](docs/zh_cn/model_zoo.md)中找到。
已支持的骨干网络:
......@@ -126,17 +126,17 @@ MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱, 下一代
其他特性
- [x] [Dynamic Voxelization](configs/dynamic_voxelization/README.md)
**注意:** [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) 支持的基于2D检测的**300+个模型 , 40+的论文算法**在 MMDetection3D 中都可以被训练或使用。
**注意:** [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/zh_cn/model_zoo.md) 支持的基于2D检测的**300+个模型 , 40+的论文算法**在 MMDetection3D 中都可以被训练或使用。
## 安装
请参考[快速入门文档](docs/getting_started.md)进行安装。
请参考[快速入门文档](docs/zh_cn/getting_started.md)进行安装。
## 快速入门
请参考[快速入门文档](docs/getting_started.md)学习 MMDetection3D 的基本使用。 我们为新手提供了分别针对[已有数据集](docs/1_exist_data_model.md)[新数据集](docs/2_new_data_model.md)的使用指南。我们也提供了一些进阶教程,内容覆盖了[学习配置文件](docs/tutorials/config.md), [增加数据集支持](docs/tutorials/customize_dataset.md), [设计新的数据预处理流程](docs/tutorials/data_pipeline.md), [增加自定义模型](docs/tutorials/customize_models.md), [增加自定义的运行时配置](docs/tutorials/customize_runtime.md)[Waymo 数据集](docs/tutorials/waymo.md).
请参考[快速入门文档](docs/zh_cn/getting_started.md)学习 MMDetection3D 的基本使用。 我们为新手提供了分别针对[已有数据集](docs/zh_cn/1_exist_data_model.md)[新数据集](docs/zh_cn/2_new_data_model.md)的使用指南。我们也提供了一些进阶教程,内容覆盖了[学习配置文件](docs/zh_cn/tutorials/config.md), [增加数据集支持](docs/zh_cn/tutorials/customize_dataset.md), [设计新的数据预处理流程](docs/zh_cn/tutorials/data_pipeline.md), [增加自定义模型](docs/zh_cn/tutorials/customize_models.md), [增加自定义的运行时配置](docs/zh_cn/tutorials/customize_runtime.md)[Waymo 数据集](docs/zh_cn/tutorials/waymo.md).
请参考 [FAQ](docs/faq.md) 查看一些常见的问题与解答。在升级 MMDetection3D 的版本时,请查看[兼容性文档](docs/compatibility.md)以知晓每个版本引入的不与之前版本兼容的更新。
请参考 [FAQ](docs/zh_cn/faq.md) 查看一些常见的问题与解答。在升级 MMDetection3D 的版本时,请查看[兼容性文档](docs/zh_cn/compatibility.md)以知晓每个版本引入的不与之前版本兼容的更新。
## 引用
......
......@@ -29,4 +29,4 @@ We implement H3DNet and provide the result and checkpoints on ScanNet datasets.
python ./tools/model_converters/convert_h3dnet_checkpoints.py ${ORIGINAL_CHECKPOINT_PATH} --out=${NEW_CHECKPOINT_PATH}
```
Then you can use the converted checkpoints following [getting_started.md](../../docs/getting_started.md).
Then you can use the converted checkpoints following [getting_started.md](../../docs/en/getting_started.md).
......@@ -35,7 +35,7 @@ We implement VoteNet and provide the result and checkpoints on ScanNet and SUNRG
python ./tools/model_converters/convert_votenet_checkpoints.py ${ORIGINAL_CHECKPOINT_PATH} --out=${NEW_CHECKPOINT_PATH}
```
Then you can use the converted checkpoints following [getting_started.md](../../docs/getting_started.md).
Then you can use the converted checkpoints following [getting_started.md](../../docs/en/getting_started.md).
## Indeterminism
......
......@@ -17,7 +17,7 @@ import sys
from m2r import MdInclude
from recommonmark.transform import AutoStructify
sys.path.insert(0, os.path.abspath('..'))
sys.path.insert(0, os.path.abspath('../../'))
# -- Project information -----------------------------------------------------
......@@ -25,7 +25,7 @@ project = 'MMDetection3D'
copyright = '2020-2023, OpenMMLab'
author = 'MMDetection3D Authors'
version_file = '../mmdet3d/version.py'
version_file = '../../mmdet3d/version.py'
def get_version():
......
......@@ -41,7 +41,7 @@ Note that we follow the original folder names for clear organization. Please ren
## Dataset Preparation
The way to organize Lyft dataset is similar to nuScenes. We also generate the .pkl and .json files which share almost the same structure.
Next, we will mainly focus on the difference between these two datasets. For a more detailed explanation of the info structure, please refer to [nuScenes tutorial](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/datasets/nuscenes_det.md).
Next, we will mainly focus on the difference between these two datasets. For a more detailed explanation of the info structure, please refer to [nuScenes tutorial](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/en/datasets/nuscenes_det.md).
To prepare info files for Lyft, run the following commands:
......
......@@ -2,7 +2,7 @@
## Dataset preparation
The overall process is similar to ScanNet 3D detection task. Please refer to this [section](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/datasets/scannet_det.md#dataset-preparation). Only a few differences and additional information about the 3D semantic segmentation data will be listed below.
The overall process is similar to ScanNet 3D detection task. Please refer to this [section](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/en/datasets/scannet_det.md#dataset-preparation). Only a few differences and additional information about the 3D semantic segmentation data will be listed below.
### Export ScanNet data
......
......@@ -2,7 +2,7 @@
## Introduction
We provide scripts for multi-modality/single-modality (LiDAR-based/vision-based), indoor/outdoor 3D detection and 3D semantic segmentation demos. The pre-trained models can be downloaded from [model zoo](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/model_zoo.md/). We provide pre-processed sample data from KITTI, SUN RGB-D, nuScenes and ScanNet dataset. You can use any other data following our pre-processing steps.
We provide scripts for multi-modality/single-modality (LiDAR-based/vision-based), indoor/outdoor 3D detection and 3D semantic segmentation demos. The pre-trained models can be downloaded from [model zoo](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/en/model_zoo.md/). We provide pre-processed sample data from KITTI, SUN RGB-D, nuScenes and ScanNet dataset. You can use any other data following our pre-processing steps.
## Testing
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment