".github/git@developer.sourcefind.cn:wangsen/mineru.git" did not exist on "44665d3966a2d4bd8a33c5b95c78b86fb9968d39"
Commit 116d9f23 authored by Shaun's avatar Shaun Committed by ZwwWayne
Browse files

[FIX] replace DefaultFormatBundle/3D with Pack(3D)DetInputs (#1987)

* replace defaultformatbundle3d with pack3ddetinputs

* remove normalize, pad, imagetotensor from configs

* rm unused key 'img_norm_cfg'

* fix lint errors

* fix lint errors

* fix lint error

* xx
parent 054a96c7
...@@ -39,8 +39,9 @@ train_pipeline = [ ...@@ -39,8 +39,9 @@ train_pipeline = [
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'), dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names), dict(
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
] ]
test_pipeline = [ test_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5), dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5),
...@@ -59,23 +60,15 @@ test_pipeline = [ ...@@ -59,23 +60,15 @@ test_pipeline = [
dict(type='RandomFlip3D'), dict(type='RandomFlip3D'),
dict( dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range), type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict( ]),
type='DefaultFormatBundle3D', dict(type='Pack3DDetInputs', keys=['points'])
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
])
] ]
# construct a pipeline for data and gt loading in show function # construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client) # please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [ eval_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5), dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5),
dict(type='LoadPointsFromMultiSweeps', sweeps_num=10), dict(type='LoadPointsFromMultiSweeps', sweeps_num=10),
dict( dict(type='Pack3DDetInputs', keys=['points'])
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
] ]
data = dict( data = dict(
......
...@@ -4,8 +4,6 @@ class_names = [ ...@@ -4,8 +4,6 @@ class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
] ]
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
file_client_args = dict(backend='disk') file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients. # Uncomment the following if use ceph or other file clients.
...@@ -23,10 +21,7 @@ train_pipeline = [ ...@@ -23,10 +21,7 @@ train_pipeline = [
multiscale_mode='range', multiscale_mode='range',
keep_ratio=True), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5), dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg), dict(type='PackDetInputs'),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
] ]
test_pipeline = [ test_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
...@@ -37,11 +32,11 @@ test_pipeline = [ ...@@ -37,11 +32,11 @@ test_pipeline = [
transforms=[ transforms=[
dict(type='Resize', keep_ratio=True), dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'), dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg), ]),
dict(type='Pad', size_divisor=32), dict(
dict(type='ImageToTensor', keys=['img']), type='PackDetInputs',
dict(type='Collect', keys=['img']), meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
]) 'scale_factor')),
] ]
data = dict( data = dict(
samples_per_gpu=2, samples_per_gpu=2,
......
...@@ -91,12 +91,8 @@ test_pipeline = [ ...@@ -91,12 +91,8 @@ test_pipeline = [
dict(type='RandomFlip3D', sync_2d=False), dict(type='RandomFlip3D', sync_2d=False),
dict( dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range), type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict( ]),
type='DefaultFormatBundle3D', dict(type='Pack3DDetInputs', keys=['points'])
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
])
] ]
data = dict( data = dict(
......
...@@ -18,8 +18,6 @@ model = dict( ...@@ -18,8 +18,6 @@ model = dict(
loss_weight=0.2))) loss_weight=0.2)))
data_root = 'data/nuimages/' data_root = 'data/nuimages/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
dict( dict(
...@@ -30,13 +28,8 @@ train_pipeline = [ ...@@ -30,13 +28,8 @@ train_pipeline = [
multiscale_mode='range', multiscale_mode='range',
keep_ratio=True), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5), dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='SegRescale', scale_factor=1 / 8), dict(type='SegRescale', scale_factor=1 / 8),
dict(type='DefaultFormatBundle'), dict(type='PackDetInputs')
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg'])
] ]
data = dict( data = dict(
train=dict( train=dict(
......
...@@ -8,9 +8,6 @@ model = dict( ...@@ -8,9 +8,6 @@ model = dict(
backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'), backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'),
roi_head=dict( roi_head=dict(
bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10))) bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10)))
# use caffe img_norm
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
...@@ -20,10 +17,7 @@ train_pipeline = [ ...@@ -20,10 +17,7 @@ train_pipeline = [
multiscale_mode='range', multiscale_mode='range',
keep_ratio=True), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5), dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg), dict(type='PackDetInputs'),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
] ]
test_pipeline = [ test_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
...@@ -34,11 +28,11 @@ test_pipeline = [ ...@@ -34,11 +28,11 @@ test_pipeline = [
transforms=[ transforms=[
dict(type='Resize', keep_ratio=True), dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'), dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg), ]),
dict(type='Pad', size_divisor=32), dict(
dict(type='ImageToTensor', keys=['img']), type='PackDetInputs',
dict(type='Collect', keys=['img']), meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
]) 'scale_factor')),
] ]
data = dict( data = dict(
train=dict(pipeline=train_pipeline), train=dict(pipeline=train_pipeline),
......
...@@ -8,9 +8,6 @@ model = dict( ...@@ -8,9 +8,6 @@ model = dict(
backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'), backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'),
roi_head=dict( roi_head=dict(
bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10))) bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10)))
# use caffe img_norm
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
...@@ -20,10 +17,7 @@ train_pipeline = [ ...@@ -20,10 +17,7 @@ train_pipeline = [
multiscale_mode='range', multiscale_mode='range',
keep_ratio=True), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5), dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg), dict(type='PackDetInputs'),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
] ]
test_pipeline = [ test_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
...@@ -34,11 +28,11 @@ test_pipeline = [ ...@@ -34,11 +28,11 @@ test_pipeline = [
transforms=[ transforms=[
dict(type='Resize', keep_ratio=True), dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'), dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg), ]),
dict(type='Pad', size_divisor=32), dict(
dict(type='ImageToTensor', keys=['img']), type='PackDetInputs',
dict(type='Collect', keys=['img']), meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
]) 'scale_factor')),
] ]
data = dict( data = dict(
train=dict(pipeline=train_pipeline), train=dict(pipeline=train_pipeline),
......
...@@ -8,9 +8,6 @@ model = dict( ...@@ -8,9 +8,6 @@ model = dict(
backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'), backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'),
roi_head=dict( roi_head=dict(
bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10))) bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10)))
# use caffe img_norm
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
...@@ -20,10 +17,7 @@ train_pipeline = [ ...@@ -20,10 +17,7 @@ train_pipeline = [
multiscale_mode='range', multiscale_mode='range',
keep_ratio=True), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5), dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg), dict(type='PackDetInputs'),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
] ]
test_pipeline = [ test_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
...@@ -34,11 +28,11 @@ test_pipeline = [ ...@@ -34,11 +28,11 @@ test_pipeline = [
transforms=[ transforms=[
dict(type='Resize', keep_ratio=True), dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'), dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg), ]),
dict(type='Pad', size_divisor=32), dict(
dict(type='ImageToTensor', keys=['img']), type='PackDetInputs',
dict(type='Collect', keys=['img']), meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
]) 'scale_factor')),
] ]
data = dict( data = dict(
train=dict(pipeline=train_pipeline), train=dict(pipeline=train_pipeline),
......
...@@ -13,8 +13,6 @@ file_client_args = dict( ...@@ -13,8 +13,6 @@ file_client_args = dict(
'./data/nuscenes/': 's3://nuscenes/nuscenes/', './data/nuscenes/': 's3://nuscenes/nuscenes/',
'data/nuscenes/': 's3://nuscenes/nuscenes/' 'data/nuscenes/': 's3://nuscenes/nuscenes/'
})) }))
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
test_pipeline = [ test_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
...@@ -25,11 +23,11 @@ test_pipeline = [ ...@@ -25,11 +23,11 @@ test_pipeline = [
transforms=[ transforms=[
dict(type='Resize', keep_ratio=True), dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'), dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg), ]),
dict(type='Pad', size_divisor=32), dict(
dict(type='ImageToTensor', keys=['img']), type='PackDetInputs',
dict(type='Collect', keys=['img']), meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
]) 'scale_factor')),
] ]
data_root = 'data/nuimages/' data_root = 'data/nuimages/'
# data = dict( # data = dict(
......
...@@ -124,12 +124,8 @@ test_pipeline = [ ...@@ -124,12 +124,8 @@ test_pipeline = [
dict(type='RandomFlip3D'), dict(type='RandomFlip3D'),
dict( dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range), type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict( ]),
type='DefaultFormatBundle3D', dict(type='Pack3DDetInputs', keys=['points'])
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
])
] ]
train_dataloader = dict( train_dataloader = dict(
......
...@@ -44,8 +44,6 @@ class_names = [ ...@@ -44,8 +44,6 @@ class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
] ]
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFileMono3D'), dict(type='LoadImageFromFileMono3D'),
dict( dict(
...@@ -58,11 +56,8 @@ train_pipeline = [ ...@@ -58,11 +56,8 @@ train_pipeline = [
with_bbox_depth=True), with_bbox_depth=True),
dict(type='Resize', img_scale=(1600, 900), keep_ratio=True), dict(type='Resize', img_scale=(1600, 900), keep_ratio=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict( dict(
type='Collect3D', type='Pack3DDetInputs',
keys=[ keys=[
'img', 'gt_bboxes', 'gt_bboxes_labels', 'attr_labels', 'img', 'gt_bboxes', 'gt_bboxes_labels', 'attr_labels',
'gt_bboxes_3d', 'gt_labels_3d', 'centers2d', 'depths' 'gt_bboxes_3d', 'gt_labels_3d', 'centers2d', 'depths'
...@@ -76,14 +71,8 @@ test_pipeline = [ ...@@ -76,14 +71,8 @@ test_pipeline = [
flip=False, flip=False,
transforms=[ transforms=[
dict(type='RandomFlip3D'), dict(type='RandomFlip3D'),
dict(type='Normalize', **img_norm_cfg), ]),
dict(type='Pad', size_divisor=32), dict(type='Pack3DDetInputs', keys=['img']),
dict(
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['img']),
])
] ]
data = dict( data = dict(
samples_per_gpu=2, samples_per_gpu=2,
......
...@@ -284,8 +284,8 @@ def update_nuscenes_infos(pkl_path, out_dir): ...@@ -284,8 +284,8 @@ def update_nuscenes_infos(pkl_path, out_dir):
ori_info_dict['ego2global_translation']) ori_info_dict['ego2global_translation'])
temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict.get( temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict.get(
'num_features', 5) 'num_features', 5)
temp_data_info['lidar_points']['lidar_path'] = Path(ori_info_dict[ temp_data_info['lidar_points']['lidar_path'] = Path(
'lidar_path']).name ori_info_dict['lidar_path']).name
temp_data_info['lidar_points'][ temp_data_info['lidar_points'][
'lidar2ego'] = convert_quaternion_to_matrix( 'lidar2ego'] = convert_quaternion_to_matrix(
ori_info_dict['lidar2ego_rotation'], ori_info_dict['lidar2ego_rotation'],
...@@ -315,8 +315,8 @@ def update_nuscenes_infos(pkl_path, out_dir): ...@@ -315,8 +315,8 @@ def update_nuscenes_infos(pkl_path, out_dir):
temp_data_info['images'] = {} temp_data_info['images'] = {}
for cam in ori_info_dict['cams']: for cam in ori_info_dict['cams']:
empty_img_info = get_empty_img_info() empty_img_info = get_empty_img_info()
empty_img_info['img_path'] = Path(ori_info_dict['cams'][cam][ empty_img_info['img_path'] = Path(
'data_path']).name ori_info_dict['cams'][cam]['data_path']).name
empty_img_info['cam2img'] = ori_info_dict['cams'][cam][ empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
'cam_intrinsic'].tolist() 'cam_intrinsic'].tolist()
empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][ empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
...@@ -411,15 +411,15 @@ def update_kitti_infos(pkl_path, out_dir): ...@@ -411,15 +411,15 @@ def update_kitti_infos(pkl_path, out_dir):
temp_data_info['images']['CAM3']['cam2img'] = ori_info_dict['calib'][ temp_data_info['images']['CAM3']['cam2img'] = ori_info_dict['calib'][
'P3'].tolist() 'P3'].tolist()
temp_data_info['images']['CAM2']['img_path'] = Path(ori_info_dict['image'][ temp_data_info['images']['CAM2']['img_path'] = Path(
'image_path']).name ori_info_dict['image']['image_path']).name
h, w = ori_info_dict['image']['image_shape'] h, w = ori_info_dict['image']['image_shape']
temp_data_info['images']['CAM2']['height'] = h temp_data_info['images']['CAM2']['height'] = h
temp_data_info['images']['CAM2']['width'] = w temp_data_info['images']['CAM2']['width'] = w
temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[ temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
'point_cloud']['num_features'] 'point_cloud']['num_features']
temp_data_info['lidar_points']['lidar_path'] = Path(ori_info_dict[ temp_data_info['lidar_points']['lidar_path'] = Path(
'point_cloud']['velodyne_path']).name ori_info_dict['point_cloud']['velodyne_path']).name
rect = ori_info_dict['calib']['R0_rect'].astype(np.float32) rect = ori_info_dict['calib']['R0_rect'].astype(np.float32)
Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32) Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32)
...@@ -533,12 +533,12 @@ def update_s3dis_infos(pkl_path, out_dir): ...@@ -533,12 +533,12 @@ def update_s3dis_infos(pkl_path, out_dir):
temp_data_info['sample_idx'] = i temp_data_info['sample_idx'] = i
temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[ temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
'point_cloud']['num_features'] 'point_cloud']['num_features']
temp_data_info['lidar_points']['lidar_path'] = Path(ori_info_dict[ temp_data_info['lidar_points']['lidar_path'] = Path(
'pts_path']).name ori_info_dict['pts_path']).name
temp_data_info['pts_semantic_mask_path'] = Path(ori_info_dict[ temp_data_info['pts_semantic_mask_path'] = Path(
'pts_semantic_mask_path']).name ori_info_dict['pts_semantic_mask_path']).name
temp_data_info['pts_instance_mask_path'] = Path(ori_info_dict[ temp_data_info['pts_instance_mask_path'] = Path(
'pts_instance_mask_path']).name ori_info_dict['pts_instance_mask_path']).name
# TODO support camera # TODO support camera
# np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam # np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam
...@@ -607,12 +607,12 @@ def update_scannet_infos(pkl_path, out_dir): ...@@ -607,12 +607,12 @@ def update_scannet_infos(pkl_path, out_dir):
temp_data_info = get_empty_standard_data_info() temp_data_info = get_empty_standard_data_info()
temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[ temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
'point_cloud']['num_features'] 'point_cloud']['num_features']
temp_data_info['lidar_points']['lidar_path'] = Path(ori_info_dict[ temp_data_info['lidar_points']['lidar_path'] = Path(
'pts_path']).name ori_info_dict['pts_path']).name
temp_data_info['pts_semantic_mask_path'] = Path(ori_info_dict[ temp_data_info['pts_semantic_mask_path'] = Path(
'pts_semantic_mask_path']).name ori_info_dict['pts_semantic_mask_path']).name
temp_data_info['pts_instance_mask_path'] = Path(ori_info_dict[ temp_data_info['pts_instance_mask_path'] = Path(
'pts_instance_mask_path']).name ori_info_dict['pts_instance_mask_path']).name
# TODO support camera # TODO support camera
# np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam # np.linalg.inv(info['axis_align_matrix'] @ extrinsic): depth2cam
...@@ -679,8 +679,8 @@ def update_sunrgbd_infos(pkl_path, out_dir): ...@@ -679,8 +679,8 @@ def update_sunrgbd_infos(pkl_path, out_dir):
temp_data_info = get_empty_standard_data_info() temp_data_info = get_empty_standard_data_info()
temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[ temp_data_info['lidar_points']['num_pts_feats'] = ori_info_dict[
'point_cloud']['num_features'] 'point_cloud']['num_features']
temp_data_info['lidar_points']['lidar_path'] = Path(ori_info_dict[ temp_data_info['lidar_points']['lidar_path'] = Path(
'pts_path']).name ori_info_dict['pts_path']).name
calib = ori_info_dict['calib'] calib = ori_info_dict['calib']
rt_mat = calib['Rt'] rt_mat = calib['Rt']
# follow Coord3DMode.convert_point # follow Coord3DMode.convert_point
...@@ -688,8 +688,8 @@ def update_sunrgbd_infos(pkl_path, out_dir): ...@@ -688,8 +688,8 @@ def update_sunrgbd_infos(pkl_path, out_dir):
]) @ rt_mat.transpose(1, 0) ]) @ rt_mat.transpose(1, 0)
depth2img = calib['K'] @ rt_mat depth2img = calib['K'] @ rt_mat
temp_data_info['images']['CAM0']['depth2img'] = depth2img.tolist() temp_data_info['images']['CAM0']['depth2img'] = depth2img.tolist()
temp_data_info['images']['CAM0']['img_path'] = Path(ori_info_dict['image'][ temp_data_info['images']['CAM0']['img_path'] = Path(
'image_path']).name ori_info_dict['image']['image_path']).name
h, w = ori_info_dict['image']['image_shape'] h, w = ori_info_dict['image']['image_shape']
temp_data_info['images']['CAM0']['height'] = h temp_data_info['images']['CAM0']['height'] = h
temp_data_info['images']['CAM0']['width'] = w temp_data_info['images']['CAM0']['width'] = w
...@@ -761,8 +761,8 @@ def update_lyft_infos(pkl_path, out_dir): ...@@ -761,8 +761,8 @@ def update_lyft_infos(pkl_path, out_dir):
temp_data_info['ego2global'] = convert_quaternion_to_matrix( temp_data_info['ego2global'] = convert_quaternion_to_matrix(
ori_info_dict['ego2global_rotation'], ori_info_dict['ego2global_rotation'],
ori_info_dict['ego2global_translation']) ori_info_dict['ego2global_translation'])
temp_data_info['lidar_points']['lidar_path'] = Path(ori_info_dict[ temp_data_info['lidar_points']['lidar_path'] = Path(
'lidar_path']).name ori_info_dict['lidar_path']).name
temp_data_info['lidar_points'][ temp_data_info['lidar_points'][
'lidar2ego'] = convert_quaternion_to_matrix( 'lidar2ego'] = convert_quaternion_to_matrix(
ori_info_dict['lidar2ego_rotation'], ori_info_dict['lidar2ego_rotation'],
...@@ -793,8 +793,8 @@ def update_lyft_infos(pkl_path, out_dir): ...@@ -793,8 +793,8 @@ def update_lyft_infos(pkl_path, out_dir):
temp_data_info['images'] = {} temp_data_info['images'] = {}
for cam in ori_info_dict['cams']: for cam in ori_info_dict['cams']:
empty_img_info = get_empty_img_info() empty_img_info = get_empty_img_info()
empty_img_info['img_path'] = Path(ori_info_dict['cams'][cam][ empty_img_info['img_path'] = Path(
'data_path']).name ori_info_dict['cams'][cam]['data_path']).name
empty_img_info['cam2img'] = ori_info_dict['cams'][cam][ empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
'cam_intrinsic'].tolist() 'cam_intrinsic'].tolist()
empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][ empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
...@@ -913,8 +913,8 @@ def update_waymo_infos(pkl_path, out_dir): ...@@ -913,8 +913,8 @@ def update_waymo_infos(pkl_path, out_dir):
'point_cloud']['num_features'] 'point_cloud']['num_features']
temp_data_info['lidar_points']['timestamp'] = ori_info_dict[ temp_data_info['lidar_points']['timestamp'] = ori_info_dict[
'timestamp'] 'timestamp']
temp_data_info['lidar_points']['lidar_path'] = Path(ori_info_dict[ temp_data_info['lidar_points']['lidar_path'] = Path(
'point_cloud']['velodyne_path']).name ori_info_dict['point_cloud']['velodyne_path']).name
# TODO discuss the usage of Tr_velo_to_cam in lidar # TODO discuss the usage of Tr_velo_to_cam in lidar
Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32) Trv2c = ori_info_dict['calib']['Tr_velo_to_cam'].astype(np.float32)
...@@ -934,8 +934,8 @@ def update_waymo_infos(pkl_path, out_dir): ...@@ -934,8 +934,8 @@ def update_waymo_infos(pkl_path, out_dir):
lidar_sweep = get_single_lidar_sweep() lidar_sweep = get_single_lidar_sweep()
lidar_sweep['ego2global'] = ori_sweep['pose'] lidar_sweep['ego2global'] = ori_sweep['pose']
lidar_sweep['timestamp'] = ori_sweep['timestamp'] lidar_sweep['timestamp'] = ori_sweep['timestamp']
lidar_sweep['lidar_points']['lidar_path'] = Path(ori_sweep[ lidar_sweep['lidar_points']['lidar_path'] = Path(
'velodyne_path']).name ori_sweep['velodyne_path']).name
# image sweeps # image sweeps
image_sweep = get_single_image_sweep(camera_types) image_sweep = get_single_image_sweep(camera_types)
image_sweep['ego2global'] = ori_sweep['pose'] image_sweep['ego2global'] = ori_sweep['pose']
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment