base_det3d_inferencer.py 12 KB
Newer Older
1
2
3
4
5
6
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Sequence, Tuple, Union

import mmengine
import numpy as np
import torch.nn as nn
7
8
from mmengine.fileio import (get_file_backend, isdir, join_path,
                             list_dir_or_file)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from mmengine.infer.infer import BaseInferencer, ModelType
from mmengine.runner import load_checkpoint
from mmengine.structures import InstanceData
from mmengine.visualization import Visualizer

from mmdet3d.registry import MODELS
from mmdet3d.utils import ConfigType, register_all_modules

InstanceList = List[InstanceData]
InputType = Union[str, np.ndarray]
InputsType = Union[InputType, Sequence[InputType]]
PredType = Union[InstanceData, InstanceList]
ImgType = Union[np.ndarray, Sequence[np.ndarray]]
ResType = Union[Dict, List[Dict], InstanceData, List[InstanceData]]


class BaseDet3DInferencer(BaseInferencer):
    """Base 3D object detection inferencer.

    Args:
        model (str, optional): Path to the config file or the model name
            defined in metafile. For example, it could be
            "pgd-kitti" or
            "configs/pgd/pgd_r101-caffe_fpn_head-gn_4xb3-4x_kitti-mono3d.py".
            If model is not specified, user must provide the
            `weights` saved by MMEngine which contains the config string.
            Defaults to None.
        weights (str, optional): Path to the checkpoint. If it is not specified
            and model is a model name of metafile, the weights will be loaded
            from metafile. Defaults to None.
        device (str, optional): Device to run inference. If None, the available
            device will be automatically used. Defaults to None.
        scope (str, optional): The scope of the model. Defaults to mmdet3d.
        palette (str): Color palette used for visualization. The order of
            priority is palette -> config -> checkpoint. Defaults to 'none'.
    """

    preprocess_kwargs: set = set()
    forward_kwargs: set = set()
    visualize_kwargs: set = {
        'return_vis', 'show', 'wait_time', 'draw_pred', 'pred_score_thr',
        'img_out_dir'
    }
    postprocess_kwargs: set = {
        'print_result', 'pred_out_file', 'return_datasample'
    }

    def __init__(self,
                 model: Union[ModelType, str, None] = None,
                 weights: Optional[str] = None,
                 device: Optional[str] = None,
                 scope: Optional[str] = 'mmdet3d',
                 palette: str = 'none') -> None:
        self.palette = palette
        register_all_modules()
        super().__init__(
            model=model, weights=weights, device=device, scope=scope)

    def _convert_syncbn(self, cfg: ConfigType):
        """Convert config's naiveSyncBN to BN.

        Args:
            config (str or :obj:`mmengine.Config`): Config file path
                or the config object.
        """
        if isinstance(cfg, dict):
            for item in cfg:
                if item == 'norm_cfg':
                    cfg[item]['type'] = cfg[item]['type']. \
                                        replace('naiveSyncBN', 'BN')
                else:
                    self._convert_syncbn(cfg[item])

    def _init_model(
        self,
        cfg: ConfigType,
        weights: str,
        device: str = 'cpu',
    ) -> nn.Module:
        self._convert_syncbn(cfg.model)
        cfg.model.train_cfg = None
        model = MODELS.build(cfg.model)

        checkpoint = load_checkpoint(model, weights, map_location='cpu')
        if 'dataset_meta' in checkpoint.get('meta', {}):
            # mmdet3d 1.x
            model.dataset_meta = checkpoint['meta']['dataset_meta']
        elif 'CLASSES' in checkpoint.get('meta', {}):
            # < mmdet3d 1.x
            classes = checkpoint['meta']['CLASSES']
            model.dataset_meta = {'CLASSES': classes}

            if 'PALETTE' in checkpoint.get('meta', {}):  # 3D Segmentor
                model.dataset_meta['PALETTE'] = checkpoint['meta']['PALETTE']
        else:
            # < mmdet3d 1.x
            model.dataset_meta = {'CLASSES': cfg.class_names}

            if 'PALETTE' in checkpoint.get('meta', {}):  # 3D Segmentor
                model.dataset_meta['PALETTE'] = checkpoint['meta']['PALETTE']

        model.cfg = cfg  # save the config in the model for convenience
        model.to(device)
        model.eval()
        return model

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    def _inputs_to_list(
            self,
            inputs: Union[dict, list],
            modality_key: Union[str, List[str]] = 'points') -> list:
        """Preprocess the inputs to a list.

        Preprocess inputs to a list according to its type:

        - list or tuple: return inputs
        - dict: the value of key 'points'/`img` is
            - Directory path: return all files in the directory
            - other cases: return a list containing the string. The string
              could be a path to file, a url or other types of string according
              to the task.

        Args:
            inputs (Union[dict, list]): Inputs for the inferencer.
            modality_key (Union[str, List[str]], optional): The key of the
                modality. Defaults to 'points'.

        Returns:
            list: List of input for the :meth:`preprocess`.
        """
        if isinstance(modality_key, str):
            modality_key = [modality_key]
        assert set(modality_key).issubset({'points', 'img'})

        for key in modality_key:
            if isinstance(inputs, dict) and isinstance(inputs[key], str):
                img = inputs[key]
                backend = get_file_backend(img)
                if hasattr(backend, 'isdir') and isdir(img):
                    # Backends like HttpsBackend do not implement `isdir`, so
                    # only those backends that implement `isdir` could accept
                    # the inputs as a directory
                    filename_list = list_dir_or_file(img, list_dir=False)
                    inputs = [{
                        f'{key}': join_path(img, filename)
                    } for filename in filename_list]

        if not isinstance(inputs, (list, tuple)):
            inputs = [inputs]

        return list(inputs)

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    def _get_transform_idx(self, pipeline_cfg: ConfigType, name: str) -> int:
        """Returns the index of the transform in a pipeline.

        If the transform is not found, returns -1.
        """
        for i, transform in enumerate(pipeline_cfg):
            if transform['type'] == name:
                return i
        return -1

    def _init_visualizer(self, cfg: ConfigType) -> Optional[Visualizer]:
        visualizer = super()._init_visualizer(cfg)
        visualizer.dataset_meta = self.model.dataset_meta
        return visualizer

    def __call__(self,
                 inputs: InputsType,
                 return_datasamples: bool = False,
                 batch_size: int = 1,
                 return_vis: bool = False,
                 show: bool = False,
                 wait_time: int = 0,
                 draw_pred: bool = True,
                 pred_score_thr: float = 0.3,
                 img_out_dir: str = '',
                 print_result: bool = False,
                 pred_out_file: str = '',
                 **kwargs) -> dict:
        """Call the inferencer.
        Args:
            inputs (InputsType): Inputs for the inferencer.
            return_datasamples (bool): Whether to return results as
                :obj:`BaseDataElement`. Defaults to False.
            batch_size (int): Inference batch size. Defaults to 1.
            return_vis (bool): Whether to return the visualization result.
                Defaults to False.
            show (bool): Whether to display the visualization results in a
                popup window. Defaults to False.
            wait_time (float): The interval of show (s). Defaults to 0.
            draw_pred (bool): Whether to draw predicted bounding boxes.
                Defaults to True.
            pred_score_thr (float): Minimum score of bboxes to draw.
                Defaults to 0.3.
            img_out_dir (str): Output directory of visualization results.
                If left as empty, no file will be saved. Defaults to ''.
            print_result (bool): Whether to print the inference result w/o
                visualization to the console. Defaults to False.
            pred_out_file: File to save the inference results w/o
                visualization. If left as empty, no file will be saved.
                Defaults to ''.
            **kwargs: Other keyword arguments passed to :meth:`preprocess`,
                :meth:`forward`, :meth:`visualize` and :meth:`postprocess`.
                Each key in kwargs should be in the corresponding set of
                ``preprocess_kwargs``, ``forward_kwargs``, ``visualize_kwargs``
                and ``postprocess_kwargs``.
        Returns:
            dict: Inference and visualization results.
        """
        return super().__call__(
            inputs,
            return_datasamples,
            batch_size,
            return_vis=return_vis,
            show=show,
            wait_time=wait_time,
            draw_pred=draw_pred,
            pred_score_thr=pred_score_thr,
            img_out_dir=img_out_dir,
            print_result=print_result,
            pred_out_file=pred_out_file,
            **kwargs)

    def postprocess(
        self,
        preds: PredType,
        visualization: Optional[List[np.ndarray]] = None,
        return_datasample: bool = False,
        print_result: bool = False,
        pred_out_file: str = '',
    ) -> Union[ResType, Tuple[ResType, np.ndarray]]:
        """Process the predictions and visualization results from ``forward``
        and ``visualize``.
        This method should be responsible for the following tasks:
        1. Convert datasamples into a json-serializable dict if needed.
        2. Pack the predictions and visualization results and return them.
        3. Dump or log the predictions.
        Args:
            preds (List[Dict]): Predictions of the model.
            visualization (Optional[np.ndarray]): Visualized predictions.
            return_datasample (bool): Whether to use Datasample to store
                inference results. If False, dict will be used.
            print_result (bool): Whether to print the inference result w/o
                visualization to the console. Defaults to False.
            pred_out_file: File to save the inference results w/o
                visualization. If left as empty, no file will be saved.
                Defaults to ''.
        Returns:
            dict: Inference and visualization results with key ``predictions``
            and ``visualization``.
            - ``visualization`` (Any): Returned by :meth:`visualize`.
            - ``predictions`` (dict or DataSample): Returned by
                :meth:`forward` and processed in :meth:`postprocess`.
                If ``return_datasample=False``, it usually should be a
                json-serializable dict containing only basic data elements such
                as strings and numbers.
        """
        result_dict = {}
        results = preds
        if not return_datasample:
            results = []
            for pred in preds:
                result = self.pred2dict(pred)
                results.append(result)
        result_dict['predictions'] = results
        if print_result:
            print(result_dict)
        if pred_out_file != '':
            mmengine.dump(result_dict, pred_out_file)
        result_dict['visualization'] = visualization
        return result_dict

    def pred2dict(self, data_sample: InstanceData) -> Dict:
        """Extract elements necessary to represent a prediction into a
        dictionary.

        It's better to contain only basic data elements such as strings and
        numbers in order to guarantee it's json-serializable.
        """
        pred_instances = data_sample.pred_instances_3d.numpy()
        result = {
290
            'bboxes_3d': pred_instances.bboxes_3d.tensor.cpu().tolist(),
291
292
293
294
295
            'labels_3d': pred_instances.labels_3d.tolist(),
            'scores_3d': pred_instances.scores_3d.tolist()
        }

        return result