// Modified from // https://github.com/facebookresearch/detectron2/tree/master/detectron2/layers/csrc/ROIAlignRotated // Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved #ifndef ROI_ALIGN_ROTATED_CUDA_KERNEL_CUH #define ROI_ALIGN_ROTATED_CUDA_KERNEL_CUH #include #ifdef MMCV_WITH_TRT #include "common_cuda_helper.hpp" #else // MMCV_WITH_TRT #ifdef MMCV_USE_PARROTS #include "parrots_cuda_helper.hpp" #else // MMCV_USE_PARROTS #include "pytorch_cuda_helper.hpp" #endif // MMCV_USE_PARROTS #endif // MMCV_WITH_TRT /*** Forward ***/ template __global__ void roi_align_rotated_forward_cuda_kernel( const int nthreads, const scalar_t *bottom_data, const scalar_t *bottom_rois, const scalar_t spatial_scale, const int sample_num, const bool aligned, const bool clockwise, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, scalar_t *top_data) { CUDA_1D_KERNEL_LOOP(index, nthreads) { // (n, c, ph, pw) is an element in the pooled output int pw = index % pooled_width; int ph = (index / pooled_width) % pooled_height; int c = (index / pooled_width / pooled_height) % channels; int n = index / pooled_width / pooled_height / channels; const scalar_t *offset_bottom_rois = bottom_rois + n * 6; int roi_batch_ind = offset_bottom_rois[0]; // Do not using rounding; this implementation detail is critical scalar_t offset = aligned ? (scalar_t)0.5 : (scalar_t)0.0; scalar_t roi_center_w = offset_bottom_rois[1] * spatial_scale - offset; scalar_t roi_center_h = offset_bottom_rois[2] * spatial_scale - offset; scalar_t roi_width = offset_bottom_rois[3] * spatial_scale; scalar_t roi_height = offset_bottom_rois[4] * spatial_scale; // scalar_t theta = offset_bottom_rois[5] * M_PI / 180.0; scalar_t theta = offset_bottom_rois[5]; if (clockwise) { theta = -theta; // If clockwise, the angle needs to be reversed. } if (!aligned) { // for backward-compatibility only // Force malformed ROIs to be 1x1 roi_width = max(roi_width, (scalar_t)1.); roi_height = max(roi_height, (scalar_t)1.); } scalar_t bin_size_h = static_cast(roi_height) / static_cast(pooled_height); scalar_t bin_size_w = static_cast(roi_width) / static_cast(pooled_width); const scalar_t *offset_bottom_data = bottom_data + (roi_batch_ind * channels + c) * height * width; // We use roi_bin_grid to sample the grid and mimic integral int roi_bin_grid_h = (sample_num > 0) ? sample_num : ceilf(roi_height / pooled_height); // e.g., = 2 int roi_bin_grid_w = (sample_num > 0) ? sample_num : ceilf(roi_width / pooled_width); // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). // Appropriate translation needs to be applied after. scalar_t roi_start_h = -roi_height / 2.0; scalar_t roi_start_w = -roi_width / 2.0; scalar_t cosscalar_theta = cos(theta); scalar_t sinscalar_theta = sin(theta); // We do average (integral) pooling inside a bin const scalar_t count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4 scalar_t output_val = 0.; for (int iy = 0; iy < roi_bin_grid_h; iy++) { // e.g., iy = 0, 1 const scalar_t yy = roi_start_h + ph * bin_size_h + static_cast(iy + .5f) * bin_size_h / static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5 for (int ix = 0; ix < roi_bin_grid_w; ix++) { const scalar_t xx = roi_start_w + pw * bin_size_w + static_cast(ix + .5f) * bin_size_w / static_cast(roi_bin_grid_w); // Rotate by theta (counterclockwise) around the center and translate scalar_t y = yy * cosscalar_theta - xx * sinscalar_theta + roi_center_h; scalar_t x = yy * sinscalar_theta + xx * cosscalar_theta + roi_center_w; scalar_t val = bilinear_interpolate( offset_bottom_data, height, width, y, x, index); output_val += val; } } output_val /= count; top_data[index] = output_val; } } /*** Backward ***/ template __global__ void roi_align_rotated_backward_cuda_kernel( const int nthreads, const scalar_t *top_diff, const scalar_t *bottom_rois, const scalar_t spatial_scale, const int sample_num, const bool aligned, const bool clockwise, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, scalar_t *bottom_diff) { CUDA_1D_KERNEL_LOOP(index, nthreads) { // (n, c, ph, pw) is an element in the pooled output int pw = index % pooled_width; int ph = (index / pooled_width) % pooled_height; int c = (index / pooled_width / pooled_height) % channels; int n = index / pooled_width / pooled_height / channels; const scalar_t *offset_bottom_rois = bottom_rois + n * 6; int roi_batch_ind = offset_bottom_rois[0]; // Do not round scalar_t offset = aligned ? (scalar_t)0.5 : (scalar_t)0.0; scalar_t roi_center_w = offset_bottom_rois[1] * spatial_scale - offset; scalar_t roi_center_h = offset_bottom_rois[2] * spatial_scale - offset; scalar_t roi_width = offset_bottom_rois[3] * spatial_scale; scalar_t roi_height = offset_bottom_rois[4] * spatial_scale; // scalar_t theta = offset_bottom_rois[5] * M_PI / 180.0; scalar_t theta = offset_bottom_rois[5]; if (clockwise) { theta = -theta; // If clockwise, the angle needs to be reversed. } if (!aligned) { // for backward-compatibility only // Force malformed ROIs to be 1x1 roi_width = max(roi_width, (scalar_t)1.); roi_height = max(roi_height, (scalar_t)1.); } scalar_t bin_size_h = static_cast(roi_height) / static_cast(pooled_height); scalar_t bin_size_w = static_cast(roi_width) / static_cast(pooled_width); scalar_t *offset_bottom_diff = bottom_diff + (roi_batch_ind * channels + c) * height * width; int top_offset = (n * channels + c) * pooled_height * pooled_width; const scalar_t *offset_top_diff = top_diff + top_offset; const scalar_t top_diff_this_bin = offset_top_diff[ph * pooled_width + pw]; // We use roi_bin_grid to sample the grid and mimic integral int roi_bin_grid_h = (sample_num > 0) ? sample_num : ceilf(roi_height / pooled_height); // e.g., = 2 int roi_bin_grid_w = (sample_num > 0) ? sample_num : ceilf(roi_width / pooled_width); // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y). // Appropriate translation needs to be applied after. scalar_t roi_start_h = -roi_height / 2.0; scalar_t roi_start_w = -roi_width / 2.0; scalar_t cosTheta = cos(theta); scalar_t sinTheta = sin(theta); // We do average (integral) pooling inside a bin const scalar_t count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4 for (int iy = 0; iy < roi_bin_grid_h; iy++) { // e.g., iy = 0, 1 const scalar_t yy = roi_start_h + ph * bin_size_h + static_cast(iy + .5f) * bin_size_h / static_cast(roi_bin_grid_h); // e.g., 0.5, 1.5 for (int ix = 0; ix < roi_bin_grid_w; ix++) { const scalar_t xx = roi_start_w + pw * bin_size_w + static_cast(ix + .5f) * bin_size_w / static_cast(roi_bin_grid_w); // Rotate by theta around the center and translate scalar_t y = yy * cosTheta - xx * sinTheta + roi_center_h; scalar_t x = yy * sinTheta + xx * cosTheta + roi_center_w; scalar_t w1, w2, w3, w4; int x_low, x_high, y_low, y_high; bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4, x_low, x_high, y_low, y_high, index); scalar_t g1 = top_diff_this_bin * w1 / count; scalar_t g2 = top_diff_this_bin * w2 / count; scalar_t g3 = top_diff_this_bin * w3 / count; scalar_t g4 = top_diff_this_bin * w4 / count; if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) { atomicAdd(offset_bottom_diff + y_low * width + x_low, g1); atomicAdd(offset_bottom_diff + y_low * width + x_high, g2); atomicAdd(offset_bottom_diff + y_high * width + x_low, g3); atomicAdd(offset_bottom_diff + y_high * width + x_high, g4); } // if } // ix } // iy } // CUDA_1D_KERNEL_LOOP } // RoIAlignBackward #endif // ROI_ALIGN_ROTATED_CUDA_KERNEL_CUH