# Copyright (c) OpenMMLab. All rights reserved. import os import numpy import pytest import torch from mmengine.utils import digit_version from mmengine.utils.dl_utils import TORCH_VERSION from mmcv.utils import IS_CUDA_AVAILABLE try: # If PyTorch version >= 1.6.0 and fp16 is enabled, torch.cuda.amp.autocast # would be imported and used; we should test if our modules support it. from torch.cuda.amp import autocast except ImportError: pass cur_dir = os.path.dirname(os.path.abspath(__file__)) input_t = [[[[1., 2., 3.], [1., 2., 3.], [1., 2., 3.]]]] output_t = [[[[0.5, 1.5, 2.5, 1.5], [1.0, 3.0, 5.0, 3.0], [1.0, 3.0, 5.0, 3.0], [0.5, 1.5, 2.5, 1.5]]]] input_grad = [[[[2., 2., 2.], [2., 2., 2.], [2., 2., 2.]]]] dcn_w_grad = [[[[9., 9.], [9., 9.]]]] dcn_offset_w_grad = [[[[-7.0, -4.0], [0.0, 0.0]]], [[[-9.0, 7.5], [-6.0, 5.0]]], [[[-4.0, -7.0], [0.0, 0.0]]], [[[-7.5, -9.0], [-5.0, -6.0]]], [[[-7.0, -4.0], [-7.0, -4.0]]], [[[-6.0, 5.0], [-9.0, 7.5]]], [[[-4.0, -7.0], [-4.0, -7.0]]], [[[-5.0, -6.0], [-7.5, -9.0]]], [[[10.5, 6.0], [7.0, 4.0]]], [[[6.0, 10.5], [4.0, 7.0]]], [[[7.0, 4.0], [10.5, 6.0]]], [[[4.0, 7.0], [6.0, 10.5]]]] dcn_offset_b_grad = [ -3.0, -1.5, -3.0, -1.5, -3.0, -1.5, -3.0, -1.5, 4.5, 4.5, 4.5, 4.5 ] class TestMdconv: def _test_mdconv(self, dtype=torch.float, device='cuda'): if not torch.cuda.is_available() and device == 'cuda': pytest.skip('test requires GPU') from mmcv.ops import ModulatedDeformConv2dPack input = torch.tensor(input_t, dtype=dtype, device=device) input.requires_grad = True dcn = ModulatedDeformConv2dPack( 1, 1, kernel_size=(2, 2), stride=1, padding=1, deform_groups=1, bias=False) if device == 'cuda': dcn.cuda() dcn.weight.data.fill_(1.) dcn.type(dtype) output = dcn(input) output.sum().backward() assert numpy.allclose(output.cpu().detach().numpy(), output_t, 1e-2) assert numpy.allclose(input.grad.cpu().detach().numpy(), input_grad, 1e-2) assert numpy.allclose(dcn.weight.grad.cpu().detach().numpy(), dcn_w_grad, 1e-2) assert numpy.allclose( dcn.conv_offset.weight.grad.cpu().detach().numpy(), dcn_offset_w_grad, 1e-2) assert numpy.allclose(dcn.conv_offset.bias.grad.cpu().detach().numpy(), dcn_offset_b_grad, 1e-2) def _test_amp_mdconv(self, input_dtype=torch.float): """The function to test amp released on pytorch 1.6.0. The type of input data might be torch.float or torch.half, so we should test mdconv in both cases. With amp, the data type of model will NOT be set manually. Args: input_dtype: torch.float or torch.half. """ if not torch.cuda.is_available(): return from mmcv.ops import ModulatedDeformConv2dPack input = torch.tensor(input_t).cuda().type(input_dtype) input.requires_grad = True dcn = ModulatedDeformConv2dPack( 1, 1, kernel_size=(2, 2), stride=1, padding=1, deform_groups=1, bias=False).cuda() dcn.weight.data.fill_(1.) output = dcn(input) output.sum().backward() assert numpy.allclose(output.cpu().detach().numpy(), output_t, 1e-2) assert numpy.allclose(input.grad.cpu().detach().numpy(), input_grad, 1e-2) assert numpy.allclose(dcn.weight.grad.cpu().detach().numpy(), dcn_w_grad, 1e-2) assert numpy.allclose( dcn.conv_offset.weight.grad.cpu().detach().numpy(), dcn_offset_w_grad, 1e-2) assert numpy.allclose(dcn.conv_offset.bias.grad.cpu().detach().numpy(), dcn_offset_b_grad, 1e-2) @pytest.mark.parametrize('device', [ 'cpu', pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), ]) def test_mdconv_float(self, device): self._test_mdconv(dtype=torch.float, device=device) @pytest.mark.parametrize('device', [ 'cpu', pytest.param( 'cuda', marks=pytest.mark.skipif( not IS_CUDA_AVAILABLE, reason='requires CUDA support')), ]) def test_mdconv_double(self, device): self._test_mdconv(dtype=torch.double, device=device) def test_mdconv_half(self): self._test_mdconv(torch.half) # test amp when torch version >= '1.6.0', the type of # input data for mdconv might be torch.float or torch.half if (TORCH_VERSION != 'parrots' and digit_version(TORCH_VERSION) >= digit_version('1.6.0')): with autocast(enabled=True): self._test_amp_mdconv(torch.float) self._test_amp_mdconv(torch.half)