Unverified Commit e05fb560 authored by Shilong Zhang's avatar Shilong Zhang Committed by GitHub
Browse files

Refactor the baseclass related to transformer (#978)



* minor changes

* change to modulist

* change to Sequential

* replace dropout with attn_drop and proj_drop in MultiheadAttention

* add operation_name for attn

* add drop path and move all ffn args to ffncfgs

* fix typo

* fix a bug when use default value of ffn_cfgs

* fix ffns

* add deprecate warning

* fix deprecate warning

* change to pop kwargs

* support register FFN of transformer

* support batch first

* fix batch first wapper

* fix forward wapper

* fix typo

* fix lint

* add unitest for transformer

* fix unitest

* fix equal

* use allclose

* fix comments

* fix comments

* change configdict to dict

* move drop to a file

* add comments for drop path

* add noqa 501

* move bnc wapper to MultiheadAttention

* move bnc wapper to MultiheadAttention

* use dep warning

* resolve comments

* add unitest:

* rename residual to identity

* revert runner

* msda residual to identity

* rename inp_identity to identity

* fix name

* fix transformer

* remove key in msda

* remove assert for key
Co-authored-by: default avatarHIT-cwh <2892770585@qq.com>
Co-authored-by: default avatarbkhuang <congee524@gmail.com>
Co-authored-by: default avatarWenwei Zhang <40779233+ZwwWayne@users.noreply.github.com>
parent 11629d52
......@@ -5,6 +5,7 @@ from .conv2d_adaptive_padding import Conv2dAdaptivePadding
from .conv_module import ConvModule
from .conv_ws import ConvAWS2d, ConvWS2d, conv_ws_2d
from .depthwise_separable_conv_module import DepthwiseSeparableConvModule
from .drop import Dropout, DropPath
from .generalized_attention import GeneralizedAttention
from .hsigmoid import HSigmoid
from .hswish import HSwish
......@@ -29,5 +30,5 @@ __all__ = [
'UPSAMPLE_LAYERS', 'PLUGIN_LAYERS', 'Scale', 'ConvAWS2d', 'ConvWS2d',
'conv_ws_2d', 'DepthwiseSeparableConvModule', 'Swish', 'Linear',
'Conv2dAdaptivePadding', 'Conv2d', 'ConvTranspose2d', 'MaxPool2d',
'ConvTranspose3d', 'MaxPool3d', 'Conv3d'
'ConvTranspose3d', 'MaxPool3d', 'Conv3d', 'Dropout', 'DropPath'
]
import torch
import torch.nn as nn
from mmcv import build_from_cfg
from .registry import DROPOUT_LAYERS
def drop_path(x, drop_prob=0., training=False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of
residual blocks).
We follow the implementation
https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py # noqa: E501
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
# handle tensors with different dimensions, not just 4D tensors.
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + torch.rand(
shape, dtype=x.dtype, device=x.device)
output = x.div(keep_prob) * random_tensor.floor()
return output
@DROPOUT_LAYERS.register_module()
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of
residual blocks).
We follow the implementation
https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py # noqa: E501
Args:
drop_prob (float): Probability of the path to be zeroed. Default: 0.1
"""
def __init__(self, drop_prob=0.1):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
@DROPOUT_LAYERS.register_module()
class Dropout(nn.Dropout):
"""A wrapper for ``torch.nn.Dropout``, We rename the ``p`` of
``torch.nn.Dropout`` to ``drop_prob`` so as to be consistent with
``DropPath``
Args:
drop_prob (float): Probability of the elements to be
zeroed. Default: 0.5.
inplace (bool): Do the operation inplace or not. Default: False.
"""
def __init__(self, drop_prob=0.5, inplace=False):
super().__init__(p=drop_prob, inplace=inplace)
def build_dropout(cfg, default_args=None):
"""Builder for drop out layers."""
return build_from_cfg(cfg, DROPOUT_LAYERS, default_args)
......@@ -7,7 +7,9 @@ PADDING_LAYERS = Registry('padding layer')
UPSAMPLE_LAYERS = Registry('upsample layer')
PLUGIN_LAYERS = Registry('plugin layer')
POSITIONAL_ENCODING = Registry('Position encoding')
ATTENTION = Registry('Attention')
TRANSFORMER_LAYER = Registry('TransformerLayer')
TRANSFORMER_LAYER_SEQUENCE = Registry('TransformerLayerSequence')
DROPOUT_LAYERS = Registry('drop out layers')
POSITIONAL_ENCODING = Registry('position encoding')
ATTENTION = Registry('attention')
FEEDFORWARD_NETWORK = Registry('feed-forward Network')
TRANSFORMER_LAYER = Registry('transformerLayer')
TRANSFORMER_LAYER_SEQUENCE = Registry('transformer-layers sequence')
This diff is collapsed.
......@@ -21,6 +21,7 @@ from .masked_conv import MaskedConv2d, masked_conv2d
from .modulated_deform_conv import (ModulatedDeformConv2d,
ModulatedDeformConv2dPack,
modulated_deform_conv2d)
from .multi_scale_deform_attn import MultiScaleDeformableAttention
from .nms import batched_nms, nms, nms_match, nms_rotated, soft_nms
from .pixel_group import pixel_group
from .point_sample import (SimpleRoIAlign, point_sample,
......@@ -50,5 +51,5 @@ __all__ = [
'SAConv2d', 'TINShift', 'tin_shift', 'box_iou_rotated', 'nms_rotated',
'upfirdn2d', 'FusedBiasLeakyReLU', 'fused_bias_leakyrelu',
'RoIAlignRotated', 'roi_align_rotated', 'pixel_group', 'contour_expand',
'BorderAlign', 'border_align'
'MultiScaleDeformableAttention', 'BorderAlign', 'border_align'
]
import math
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd.function import Function, once_differentiable
from mmcv import deprecated_api_warning
from mmcv.cnn import constant_init, xavier_init
from mmcv.cnn.bricks.registry import ATTENTION
from mmcv.runner import BaseModule
from ..utils import ext_loader
ext_module = ext_loader.load_ext(
......@@ -140,3 +148,211 @@ def multi_scale_deformable_attn_pytorch(value, value_spatial_shapes,
attention_weights).sum(-1).view(bs, num_heads * embed_dims,
num_queries)
return output.transpose(1, 2).contiguous()
@ATTENTION.register_module()
class MultiScaleDeformableAttention(BaseModule):
"""An attention module used in Deformable-Detr. `Deformable DETR:
Deformable Transformers for End-to-End Object Detection.
<https://arxiv.org/pdf/2010.04159.pdf>`_.
Args:
embed_dims (int): The embedding dimension of Attention.
Default: 256.
num_heads (int): Parallel attention heads. Default: 64.
num_levels (int): The number of feature map used in
Attention. Default: 4.
num_points (int): The number of sampling points for
each query in each head. Default: 4.
im2col_step (int): The step used in image_to_column.
Default: 64.
dropout (float): A Dropout layer on `inp_identity`.
Default: 0.1.
batch_first (bool): Key, Query and Value are shape of
(batch, n, embed_dim)
or (n, batch, embed_dim). Default to False.
norm_cfg (dict): Config dict for normalization layer.
Default: None.
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
Default: None.
"""
def __init__(self,
embed_dims=256,
num_heads=8,
num_levels=4,
num_points=4,
im2col_step=64,
dropout=0.1,
batch_first=False,
norm_cfg=None,
init_cfg=None):
super().__init__(init_cfg)
if embed_dims % num_heads != 0:
raise ValueError(f'embed_dims must be divisible by num_heads, '
f'but got {embed_dims} and {num_heads}')
dim_per_head = embed_dims // num_heads
self.norm_cfg = norm_cfg
self.dropout = nn.Dropout(dropout)
self.batch_first = batch_first
# you'd better set dim_per_head to a power of 2
# which is more efficient in the CUDA implementation
def _is_power_of_2(n):
if (not isinstance(n, int)) or (n < 0):
raise ValueError(
'invalid input for _is_power_of_2: {} (type: {})'.format(
n, type(n)))
return (n & (n - 1) == 0) and n != 0
if not _is_power_of_2(dim_per_head):
warnings.warn(
"You'd better set embed_dims in "
'MultiScaleDeformAttention to make '
'the dimension of each attention head a power of 2 '
'which is more efficient in our CUDA implementation.')
self.im2col_step = im2col_step
self.embed_dims = embed_dims
self.num_levels = num_levels
self.num_heads = num_heads
self.num_points = num_points
self.sampling_offsets = nn.Linear(
embed_dims, num_heads * num_levels * num_points * 2)
self.attention_weights = nn.Linear(embed_dims,
num_heads * num_levels * num_points)
self.value_proj = nn.Linear(embed_dims, embed_dims)
self.output_proj = nn.Linear(embed_dims, embed_dims)
self.init_weights()
def init_weights(self):
"""Default initialization for Parameters of Module."""
constant_init(self.sampling_offsets, 0.)
thetas = torch.arange(
self.num_heads,
dtype=torch.float32) * (2.0 * math.pi / self.num_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = (grid_init /
grid_init.abs().max(-1, keepdim=True)[0]).view(
self.num_heads, 1, 1,
2).repeat(1, self.num_levels, self.num_points, 1)
for i in range(self.num_points):
grid_init[:, :, i, :] *= i + 1
self.sampling_offsets.bias.data = grid_init.view(-1)
constant_init(self.attention_weights, val=0., bias=0.)
xavier_init(self.value_proj, distribution='uniform', bias=0.)
xavier_init(self.output_proj, distribution='uniform', bias=0.)
self._is_init = True
@deprecated_api_warning({'residual': 'identity'},
cls_name='MultiScaleDeformableAttention')
def forward(self,
query,
key=None,
value=None,
identity=None,
query_pos=None,
key_padding_mask=None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
**kwargs):
"""Forward Function of MultiScaleDeformAttention.
Args:
query (Tensor): Query of Transformer with shape
(num_query, bs, embed_dims).
key (Tensor): The key tensor with shape
`(num_key, bs, embed_dims)`.
value (Tensor): The value tensor with shape
`(num_key, bs, embed_dims)`.
identity (Tensor): The tensor used for addition, with the
same shape as `query`. Default None. If None,
`query` will be used.
query_pos (Tensor): The positional encoding for `query`.
Default: None.
key_pos (Tensor): The positional encoding for `key`. Default
None.
reference_points (Tensor): The normalized reference
points with shape (bs, num_query, num_levels, 2),
all elements is range in [0, 1], top-left (0,0),
bottom-right (1, 1), including padding area.
or (N, Length_{query}, num_levels, 4), add
additional two dimensions is (w, h) to
form reference boxes.
key_padding_mask (Tensor): ByteTensor for `query`, with
shape [bs, num_key].
spatial_shapes (Tensor): Spatial shape of features in
different levels. With shape (num_levels, 2),
last dimension represents (h, w).
level_start_index (Tensor): The start index of each level.
A tensor has shape ``(num_levels, )`` and can be represented
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
Returns:
Tensor: forwarded results with shape [num_query, bs, embed_dims].
"""
if value is None:
value = query
if identity is None:
identity = query
if query_pos is not None:
query = query + query_pos
if not self.batch_first:
# change to (bs, num_query ,embed_dims)
query = query.permute(1, 0, 2)
value = value.permute(1, 0, 2)
bs, num_query, _ = query.shape
bs, num_value, _ = value.shape
assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value
value = self.value_proj(value)
if key_padding_mask is not None:
value = value.masked_fill(key_padding_mask[..., None], 0.0)
value = value.view(bs, num_value, self.num_heads, -1)
sampling_offsets = self.sampling_offsets(query).view(
bs, num_query, self.num_heads, self.num_levels, self.num_points, 2)
attention_weights = self.attention_weights(query).view(
bs, num_query, self.num_heads, self.num_levels * self.num_points)
attention_weights = attention_weights.softmax(-1)
attention_weights = attention_weights.view(bs, num_query,
self.num_heads,
self.num_levels,
self.num_points)
if reference_points.shape[-1] == 2:
offset_normalizer = torch.stack(
[spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
sampling_locations = reference_points[:, :, None, :, None, :] \
+ sampling_offsets \
/ offset_normalizer[None, None, None, :, None, :]
elif reference_points.shape[-1] == 4:
sampling_locations = reference_points[:, :, None, :, None, :2] \
+ sampling_offsets / self.num_points \
* reference_points[:, :, None, :, None, 2:] \
* 0.5
else:
raise ValueError(
f'Last dim of reference_points must be'
f' 2 or 4, but get {reference_points.shape[-1]} instead.')
if torch.cuda.is_available():
output = MultiScaleDeformableAttnFunction.apply(
value, spatial_shapes, level_start_index, sampling_locations,
attention_weights, self.im2col_step)
else:
output = multi_scale_deformable_attn_pytorch(
value, spatial_shapes, level_start_index, sampling_locations,
attention_weights, self.im2col_step)
output = self.output_proj(output)
if not self.batch_first:
# (num_query, bs ,embed_dims)
output = output.permute(1, 0, 2)
return self.dropout(output) + identity
import pytest
import torch
from mmcv.cnn.bricks.drop import DropPath
from mmcv.cnn.bricks.transformer import (FFN, BaseTransformerLayer,
MultiheadAttention,
TransformerLayerSequence)
def test_multiheadattention():
MultiheadAttention(
embed_dims=5,
num_heads=5,
attn_drop=0,
proj_drop=0,
dropout_layer=dict(type='Dropout', drop_prob=0.),
batch_first=True)
batch_dim = 2
embed_dim = 5
num_query = 100
attn_batch_first = MultiheadAttention(
embed_dims=5,
num_heads=5,
attn_drop=0,
proj_drop=0,
dropout_layer=dict(type='DropPath', drop_prob=0.),
batch_first=True)
attn_query_first = MultiheadAttention(
embed_dims=5,
num_heads=5,
attn_drop=0,
proj_drop=0,
dropout_layer=dict(type='DropPath', drop_prob=0.),
batch_first=False)
param_dict = dict(attn_query_first.named_parameters())
for n, v in attn_batch_first.named_parameters():
param_dict[n].data = v.data
input_batch_first = torch.rand(batch_dim, num_query, embed_dim)
input_query_first = input_batch_first.transpose(0, 1)
assert torch.allclose(
attn_query_first(input_query_first).sum(),
attn_batch_first(input_batch_first).sum())
key_batch_first = torch.rand(batch_dim, num_query, embed_dim)
key_query_first = key_batch_first.transpose(0, 1)
assert torch.allclose(
attn_query_first(input_query_first, key_query_first).sum(),
attn_batch_first(input_batch_first, key_batch_first).sum())
identity = torch.ones_like(input_query_first)
# check deprecated arguments can be used normally
assert torch.allclose(
attn_query_first(
input_query_first, key_query_first, residual=identity).sum(),
attn_batch_first(input_batch_first, key_batch_first).sum() +
identity.sum() - input_batch_first.sum())
assert torch.allclose(
attn_query_first(
input_query_first, key_query_first, identity=identity).sum(),
attn_batch_first(input_batch_first, key_batch_first).sum() +
identity.sum() - input_batch_first.sum())
attn_query_first(
input_query_first, key_query_first, identity=identity).sum(),
def test_ffn():
with pytest.raises(AssertionError):
# num_fcs should be no less than 2
FFN(num_fcs=1)
FFN(dropout=0, add_residual=True)
ffn = FFN(dropout=0, add_identity=True)
input_tensor = torch.rand(2, 20, 256)
input_tensor_nbc = input_tensor.transpose(0, 1)
assert torch.allclose(ffn(input_tensor).sum(), ffn(input_tensor_nbc).sum())
residual = torch.rand_like(input_tensor)
torch.allclose(
ffn(input_tensor, residual=residual).sum(),
ffn(input_tensor).sum() + residual.sum() - input_tensor.sum())
torch.allclose(
ffn(input_tensor, identity=residual).sum(),
ffn(input_tensor).sum() + residual.sum() - input_tensor.sum())
def test_basetransformerlayer():
attn_cfgs = dict(type='MultiheadAttention', embed_dims=256, num_heads=8),
feedforward_channels = 2048
ffn_dropout = 0.1
operation_order = ('self_attn', 'norm', 'ffn', 'norm')
# test deprecated_args
baselayer = BaseTransformerLayer(
attn_cfgs=attn_cfgs,
feedforward_channels=feedforward_channels,
ffn_dropout=ffn_dropout,
operation_order=operation_order)
assert baselayer.batch_first is False
assert baselayer.ffns[0].feedforward_channels == feedforward_channels
attn_cfgs = dict(type='MultiheadAttention', num_heads=8, embed_dims=256),
feedforward_channels = 2048
ffn_dropout = 0.1
operation_order = ('self_attn', 'norm', 'ffn', 'norm')
baselayer = BaseTransformerLayer(
attn_cfgs=attn_cfgs,
feedforward_channels=feedforward_channels,
ffn_dropout=ffn_dropout,
operation_order=operation_order,
batch_first=True)
assert baselayer.attentions[0].batch_first
in_tensor = torch.rand(2, 10, 256)
baselayer(in_tensor)
def test_transformerlayersequence():
squeue = TransformerLayerSequence(
num_layers=6,
transformerlayers=dict(
type='BaseTransformerLayer',
attn_cfgs=[
dict(
type='MultiheadAttention',
embed_dims=256,
num_heads=8,
dropout=0.1),
dict(type='MultiheadAttention', embed_dims=256, num_heads=4)
],
feedforward_channels=1024,
ffn_dropout=0.1,
operation_order=('self_attn', 'norm', 'cross_attn', 'norm', 'ffn',
'norm')))
assert len(squeue.layers) == 6
assert squeue.pre_norm is False
with pytest.raises(AssertionError):
# if transformerlayers is a list, len(transformerlayers)
# should be equal to num_layers
TransformerLayerSequence(
num_layers=6,
transformerlayers=[
dict(
type='BaseTransformerLayer',
attn_cfgs=[
dict(
type='MultiheadAttention',
embed_dims=256,
num_heads=8,
dropout=0.1),
dict(type='MultiheadAttention', embed_dims=256)
],
feedforward_channels=1024,
ffn_dropout=0.1,
operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
'ffn', 'norm'))
])
def test_drop_path():
drop_path = DropPath(drop_prob=0)
test_in = torch.rand(2, 3, 4, 5)
assert test_in is drop_path(test_in)
drop_path = DropPath(drop_prob=0.1)
drop_path.training = False
test_in = torch.rand(2, 3, 4, 5)
assert test_in is drop_path(test_in)
drop_path.training = True
assert test_in is not drop_path(test_in)
......@@ -2,7 +2,8 @@ import pytest
import torch
from mmcv.ops.multi_scale_deform_attn import (
MultiScaleDeformableAttnFunction, multi_scale_deformable_attn_pytorch)
MultiScaleDeformableAttention, MultiScaleDeformableAttnFunction,
multi_scale_deformable_attn_pytorch)
_USING_PARROTS = True
try:
......@@ -98,7 +99,14 @@ def test_forward_equal_with_pytorch_float():
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='requires CUDA support')
@pytest.mark.parametrize('channels', [4, 30, 32, 64, 71, 1025, 2048, 3096])
@pytest.mark.parametrize('channels', [
4,
30,
32,
64,
71,
1025,
])
def test_gradient_numerical(channels,
grad_value=True,
grad_sampling_loc=True,
......@@ -134,3 +142,20 @@ def test_gradient_numerical(channels,
assert gradcheck(func, (value.double(), shapes, level_start_index,
sampling_locations.double(),
attention_weights.double(), im2col_step))
def test_multiscale_deformable_attention():
with pytest.raises(ValueError):
# embed_dims must be divisible by num_heads,
MultiScaleDeformableAttention(
embed_dims=256,
num_heads=7,
)
with pytest.raises(ValueError):
# embed_dims must be divisible by num_heads,
MultiScaleDeformableAttention(
embed_dims=256,
num_heads=7,
)
MultiScaleDeformableAttention(embed_dims=256, num_heads=8)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment