Unverified Commit bd1da5ab authored by Zaida Zhou's avatar Zaida Zhou Committed by GitHub
Browse files

[Docs] Refine README and installation documentations (#1977)

* [Docs] Refine README

* refine table

* minor refinement

* refine

* refine

* add version info

* add version info

* update version info

* refine

* refine

* add module links in docs/en/introduction

* update docs/en

* fix typo

* update docs/en

* add version.json in zh_cn

* minor refinement

* update version.json

* update Dockerfile

* minor fix

* update installation of macOS

* resolve comments
parent e417035f
This diff is collapsed.
This diff is collapsed.
......@@ -16,5 +16,8 @@ RUN apt-get update && apt-get install -y libgl1 libglib2.0-0 \
&& rm -rf /var/lib/apt/lists/*
# Install mmcv-full
ARG MMCV="1.5.1"
RUN pip install openmim && mim install mmcv-full==${MMCV} && python -c 'import mmcv;print(mmcv.__version__)'
ARG MMCV=""
RUN if [ "${MMCV}" = "" ]; then pip install -U openmim && mim install mmcv-full; else pip install -U openmim && mim install mmcv-full==${MMCV}; fi
# Verify the installation
RUN python -c 'import mmcv;print(mmcv.__version__)'
This diff is collapsed.
......@@ -56,6 +56,8 @@ extensions = [
myst_heading_anchors = 4
myst_enable_extensions = ['colon_fence']
autodoc_mock_imports = ['mmcv._ext', 'mmcv.utils.ext_loader', 'torchvision']
# Add any paths that contain templates here, relative to this directory.
......
## Build MMCV from source
### Build on Linux or macOS
### Build mmcv-full
After cloning the repo with
Before installing mmcv-full, make sure that PyTorch has been successfully installed following the [PyTorch official installation guide](https://pytorch.org/get-started/locally/#start-locally). This can be verified using the following command
```bash
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
python -c 'import torch;print(torch.__version__)'
```
It is recommended to install `ninja` to speed up the compilation
If version information is output, then PyTorch is installed.
```bash
pip install -r requirements/optional.txt
```{note}
- To compile ONNX Runtime custom operators, please refer to [How to build custom operators for ONNX Runtime](https://mmcv.readthedocs.io/en/latest/deployment/onnxruntime_op.html#how-to-build-custom-operators-for-onnx-runtime)
- To compile TensorRT customization, please refer to [How to build TensorRT plugins in MMCV](https://mmcv.readthedocs.io/en/latest/deployment/tensorrt_plugin.html#how-to-build-tensorrt-plugins-in-mmcv)
```
```{note}
If you would like to use `opencv-python-headless` instead of `opencv-python`,
e.g., in a minimum container environment or servers without GUI,
you can first install it before installing MMCV to skip the installation of `opencv-python`.
```
You can either
#### Build on Linux
- install the lite version
1. Clone the repo
```bash
pip install -e .
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
```
- install the full version
2. Install `ninja` and `psutil` to speed up the compilation
```bash
MMCV_WITH_OPS=1 pip install -e .
pip install -r requirements/optional.txt
```
If you are on macOS, add the following environment variables before the installing command.
3. Check the nvcc version (requires 9.2+. Skip if no GPU available.)
```bash
CC=clang CXX=clang++ CFLAGS='-stdlib=libc++'
```
```bash
nvcc --version
```
e.g.,
If the above command outputs the following message, it means that the nvcc setting is OK, otherwise you need to set CUDA_HOME.
```bash
CC=clang CXX=clang++ CFLAGS='-stdlib=libc++' MMCV_WITH_OPS=1 pip install -e .
```
```
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Nov_30_19:08:53_PST_2020
Cuda compilation tools, release 11.2, V11.2.67
Build cuda_11.2.r11.2/compiler.29373293_0
```
:::{note}
If you want to support ROCm, you can refer to [AMD ROCm](https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html) to install ROCm.
:::
4. Check the gcc version (requires 5.4+)
```bash
gcc --version
```
5. Start building (takes 10+ min)
```bash
MMCV_WITH_OPS=1 pip install -e . -v
```
6. Validate the installation
```bash
python .dev_scripts/check_installation.py
```
If no error is reported by the above command, the installation is successful. If there is an error reported, please check [Frequently Asked Questions](../faq.md) to see if there is already a solution.
If no solution is found, please feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues).
#### Build on macOS
```{note}
If you would like to use `opencv-python-headless` instead of `opencv-python`,
e.g., in a minimum container environment or servers without GUI,
you can first install it before installing MMCV to skip the installation of `opencv-python`.
If you are using a mac with an M1 chip, install the nightly version of PyTorch, otherwise you will encounter the problem in [issues#2218](https://github.com/open-mmlab/mmcv/issues/2218).
```
### Build on Windows
1. Clone the repo
```bash
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
```
2. Install `ninja` and `psutil` to speed up the compilation
```bash
pip install -r requirements/optional.txt
```
3. Start building
```bash
MMCV_WITH_OPS=1 pip install -e .
```
4. Validate the installation
```bash
python .dev_scripts/check_installation.py
```
If no error is reported by the above command, the installation is successful. If there is an error reported, please check [Frequently Asked Questions](../faq.md) to see if there is already a solution.
If no solution is found, please feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues).
#### Build on Windows
Building MMCV on Windows is a bit more complicated than that on Linux.
The following instructions show how to get this accomplished.
#### Prerequisite
##### Prerequisite
The following software is required for building MMCV on windows.
Install them first.
......@@ -71,7 +137,7 @@ Install them first.
You should know how to set up environment variables, especially `Path`, on Windows. The following instruction relies heavily on this skill.
```
#### Setup Python Environment
##### Common steps
1. Launch Anaconda prompt from Windows Start menu
......@@ -79,62 +145,45 @@ You should know how to set up environment variables, especially `Path`, on Windo
2. Create a new conda environment
```shell
conda create --name mmcv python=3.7 # 3.6, 3.7, 3.8 should work too as tested
conda activate mmcv # make sure to activate environment before any operation
```powershell
(base) PS C:\Users\xxx> conda create --name mmcv python=3.7
(base) PS C:\Users\xxx> conda activate mmcv # make sure to activate environment before any operation
```
3. Install PyTorch. Choose a version based on your need.
```shell
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
```powershell
# CUDA version
(mmcv) PS C:\Users\xxx> conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
# CPU version
(mmcv) PS C:\Users\xxx> conda install install pytorch torchvision cpuonly -c pytorch
```
We only tested PyTorch version >= 1.6.0.
4. Clone the repo
4. Prepare MMCV source code
```shell
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
```powershell
(mmcv) PS C:\Users\xxx> git clone https://github.com/open-mmlab/mmcv.git
(mmcv) PS C:\Users\xxx\mmcv> cd mmcv
```
5. Install required Python packages
5. Install `ninja` and `psutil` to speed up the compilation
```shell
pip3 install -r requirements/runtime.txt
```powershell
(mmcv) PS C:\Users\xxx\mmcv> pip install -r requirements/optional.txt
```
6. It is recommended to install `ninja` to speed up the compilation
6. Install required Python packages
```bash
pip install -r requirements/optional.txt
```shell
(mmcv) PS C:\Users\xxx\mmcv> pip install -r requirements/runtime.txt
```
#### Build and install MMCV
MMCV can be built in three ways:
1. Lite version (without ops)
In this way, no custom ops are compiled and mmcv is a pure python package.
2. Full version (CPU ops)
Module `ops` will be compiled as a pytorch extension, but only x86 code will be compiled. The compiled ops can be executed on CPU only.
3. Full version (CUDA ops)
Both x86 and CUDA codes of `ops` module will be compiled. The compiled version can be run on both CPU and CUDA-enabled GPU (if implemented).
##### Common steps
1. Set up MSVC compiler
7. Set up MSVC compiler
Set Environment variable, add `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\Hostx86\x64` to `PATH`, so that `cl.exe` will be available in prompt, as shown below.
```none
(base) PS C:\Users\xxx> cl
```powershell
(mmcv) PS C:\Users\xxx\mmcv> cl
Microsoft (R) C/C++ Optimizing Compiler Version 19.27.29111 for x64
Copyright (C) Microsoft Corporation. All rights reserved.
......@@ -145,124 +194,135 @@ MMCV can be built in three ways:
You may want to change the system language to English because pytorch will parse text output from `cl.exe` to check its version. However only utf-8 is recognized. Navigate to Control Panel -> Region -> Administrative -> Language for Non-Unicode programs and change it to English.
##### Option 1: Build MMCV (lite version)
##### Build and install MMCV
After finishing above common steps, launch Anaconda shell from Start menu and issue the following commands:
mmcv-full can be built in two ways:
```shell
# activate environment
conda activate mmcv
# change directory
cd mmcv
# install
python setup.py develop
# check
pip list
```
1. Full version (CPU ops)
##### Option 2: Build MMCV (full version with CPU)
Module `ops` will be compiled as a pytorch extension, but only x86 code will be compiled. The compiled ops can be executed on CPU only.
1. Finish above common steps
2. Full version (CUDA ops)
2. Set up environment variables
Both x86 and CUDA codes of `ops` module will be compiled. The compiled version can be run on both CPU and CUDA-enabled GPU (if implemented).
```shell
$env:MMCV_WITH_OPS = 1
$env:MAX_JOBS = 8 # based on your available number of CPU cores and amount of memory
```
###### CPU version
3. Following build steps of the lite version
1. Set up environment variables
```shell
# activate environment
conda activate mmcv
# change directory
cd mmcv
# build
python setup.py build_ext # if success, cl will be launched to compile ops
# install
python setup.py develop
# check
pip list
```powershell
(mmcv) PS C:\Users\xxx\mmcv> $env:MMCV_WITH_OPS = 1
```
##### Option 3: Build MMCV (full version with CUDA)
2. Build and install
```powershell
(mmcv) PS C:\Users\xxx\mmcv> python setup.py build_ext
(mmcv) PS C:\Users\xxx\mmcv> python setup.py develop
```
1. Finish above common steps
###### GPU version
2. Make sure `CUDA_PATH` or `CUDA_HOME` is already set in `envs` via `ls env:`, desired output is shown as below:
```none
(base) PS C:\Users\WRH> ls env:
```powershell
(mmcv) PS C:\Users\xxx\mmcv> ls env:
Name Value
---- -----
<... omit some lines ...>
CUDA_PATH C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2
CUDA_PATH_V10_1 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1
CUDA_PATH_V10_2 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2
<... omit some lines ...>
```
This should already be done by CUDA installer. If not, or you have multiple version of CUDA toolkit installed, set it with
```shell
$env:CUDA_HOME = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2"
```powershell
(mmcv) PS C:\Users\xxx\mmcv> $env:CUDA_HOME = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2"
# OR
$env:CUDA_HOME = $env:CUDA_PATH_V10_2 # if CUDA_PATH_V10_2 is in envs:
(mmcv) PS C:\Users\xxx\mmcv> $env:CUDA_HOME = $env:CUDA_PATH_V10_2 # if CUDA_PATH_V10_2 is in envs:
```
3. Set CUDA target arch
```shell
# Suppose you are using GTX 1080, which is of capability 6.1
$env:TORCH_CUDA_ARCH_LIST="6.1"
# OR build all supported arch, will be slow
$env:TORCH_CUDA_ARCH_LIST="3.5 3.7 5.0 5.2 6.0 6.1 7.0 7.5"
# Here you need to change to the target architecture corresponding to your GPU
(mmcv) PS C:\Users\xxx\mmcv> $env:TORCH_CUDA_ARCH_LIST="7.5"
```
```{note}
Check your the compute capability of your GPU from [here](https://developer.nvidia.com/cuda-gpus).
```
:::{note}
Check your the compute capability of your GPU from [here](https://developer.nvidia.com/cuda-gpus).
4. Launch compiling the same way as CPU
```powershell
(mmcv) PS C:\Users\xxx\mmcv> &"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite\deviceQuery.exe"
Device 0: "NVIDIA GeForce GTX 1660 SUPER"
CUDA Driver Version / Runtime Version 11.7 / 11.1
CUDA Capability Major/Minor version number: 7.5
```
```shell
$env:MMCV_WITH_OPS = 1
$env:MAX_JOBS = 8 # based on available number of CPU cores and amount of memory
# activate environment
conda activate mmcv
# change directory
cd mmcv
The 7.5 above indicates the target architecture. Note: You need to replace v10.2 with your CUDA version in the above command.
:::
4. Build and install
```powershell
# build
python setup.py build_ext # if success, cl will be launched to compile ops
# install
python setup.py develop
# check
pip list
```
```{note}
If you are compiling against PyTorch 1.6.0, you might meet some errors from PyTorch as described in [this issue](https://github.com/pytorch/pytorch/issues/42467). Follow [this pull request](https://github.com/pytorch/pytorch/pull/43380/files) to modify the source code in your local PyTorch installation.
```{note}
If you are compiling against PyTorch 1.6.0, you might meet some errors from PyTorch as described in [this issue](https://github.com/pytorch/pytorch/issues/42467). Follow [this pull request](https://github.com/pytorch/pytorch/pull/43380/files) to modify the source code in your local PyTorch installation.
```
##### Validate installation
```powershell
(mmcv) PS C:\Users\xxx\mmcv> python .dev_scripts/check_installation.py
```
If you meet issues when running or compiling mmcv, we list some common issues in [Frequently Asked Question](../faq.html).
If no error is reported by the above command, the installation is successful. If there is an error reported, please check [Frequently Asked Questions](../faq.md) to see if there is already a solution.
If no solution is found, please feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues).
### Build mmcv
If you need to use PyTorch-related modules, make sure PyTorch has been successfully installed in your environment by referring to the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation).
1. Clone the repo
## \[Optional\] Build MMCV on IPU machine
```bash
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
```
2. Start building
```bash
pip install -e . -v
```
3. Validate installation
```bash
python -c 'import mmcv;print(mmcv.__version__)'
```
### Build mmcv-full on IPU machine
Firstly, you need to apply for an IPU cloud machine, see [here](https://www.graphcore.ai/ipus-in-the-cloud).
### Option 1: Docker
#### Option 1: Docker
1. Pull docker
```shell
```bash
docker pull graphcore/pytorch
```
```
2. Build MMCV under same python environment
### Option 2: Install from SDK
#### Option 2: Install from SDK
1. Build MMCV
......
This diff is collapsed.
......@@ -22,17 +22,17 @@ research projects as below:
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
It provides the following functionalities.
It provides the following functionalities:
- Universal IO APIs
- Image/Video processing
- Image and annotation visualization
- Useful utilities (progress bar, timer, ...)
- PyTorch runner with hooking mechanism
- Various CNN architectures
- High-quality implementation of common CUDA ops
- [Universal IO APIs](https://mmcv.readthedocs.io/en/latest/understand_mmcv/io.html)
- [Image/Video processing](https://mmcv.readthedocs.io/en/latest/understand_mmcv/data_process.html)
- [Image and annotation visualization](https://mmcv.readthedocs.io/en/latest/understand_mmcv/visualization.html)
- [Useful utilities (progress bar, timer, ...)](https://mmcv.readthedocs.io/en/latest/understand_mmcv/utils.html)
- [PyTorch runner with hooking mechanism](https://mmcv.readthedocs.io/en/latest/understand_mmcv/runner.html)
- [Various CNN architectures](https://mmcv.readthedocs.io/en/latest/understand_mmcv/cnn.html)
- [High-quality implementation of common CPU and CUDA ops](https://mmcv.readthedocs.io/en/latest/understand_mmcv/ops.html)
It supports the following systems.
It supports the following systems:
- Linux
- Windows
......
This diff is collapsed.
......@@ -57,6 +57,8 @@ extensions = [
myst_heading_anchors = 4
myst_enable_extensions = ['colon_fence']
autodoc_mock_imports = ['mmcv._ext', 'mmcv.utils.ext_loader', 'torchvision']
autosectionlabel_prefix_document = True
......
## 从源码编译 MMCV
### 在 Linux 或者 macOS 上编译 MMCV
### 编译 mmcv-full
克隆算法库
在编译 mmcv-full 之前,请确保 PyTorch 已经成功安装在环境中,可以参考 [PyTorch 官方安装文档](https://pytorch.org/get-started/locally/#start-locally)。可使用以下命令验证
```bash
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
python -c 'import torch;print(torch.__version__)'
```
建议安装 `ninja` 以加快编译速度
```bash
pip install -r requirements/optional.txt
```{note}
- 如需编译 ONNX Runtime 自定义算子,请参考[如何编译ONNX Runtime自定义算子](https://mmcv.readthedocs.io/zh_CN/latest/deployment/onnxruntime_op.html#id1)
- 如需编译 TensorRT 自定义,请参考[如何编译MMCV中的TensorRT插件](https://mmcv.readthedocs.io/zh_CN/latest/deployment/tensorrt_plugin.html#id3)
```
你可以安装 lite 版本
:::{note}
- 如果克隆代码仓库的速度过慢,可以使用以下命令克隆(注意:gitee 的 mmcv 不一定和 github 的保持一致,因为每天只同步一次)
```bash
pip install -e .
git clone https://gitee.com/open-mmlab/mmcv.git
```
也可以安装 full 版本
- 如果打算使用 `opencv-python-headless` 而不是 `opencv-python`,例如在一个很小的容器环境或者没有图形用户界面的服务器中,你可以先安装 `opencv-python-headless`,这样在安装 mmcv 依赖的过程中会跳过 `opencv-python`
- 如果编译过程安装依赖库的时间过长,可以[设置 pypi 源](https://mirrors.tuna.tsinghua.edu.cn/help/pypi/)
```bash
MMCV_WITH_OPS=1 pip install -e .
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
```
如果是在 macOS 上编译,则需要在安装命令前添加一些环境变量
:::
```bash
CC=clang CXX=clang++ CFLAGS='-stdlib=libc++'
```
#### 在 Linux 上编译 mmcv-full
例如
| TODO: 视频教程
```bash
CC=clang CXX=clang++ CFLAGS='-stdlib=libc++' MMCV_WITH_OPS=1 pip install -e .
```
1. 克隆代码仓库
```{note}
如果你打算使用 `opencv-python-headless` 而不是 `opencv-python`,例如在一个很小的容器环境或者没有图形用户界面的服务器中,你可以先安装 `opencv-python-headless`,这样在安装 mmcv 依赖的过程中会跳过 `opencv-python`
```
```bash
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
```
### 在 Windows 上编译 MMCV
2. 安装 `ninja``psutil` 以加快编译速度
在 Windows 上编译 MMCV 比 Linux 复杂,本节将一步步介绍如何在 Windows 上编译 MMCV。
```bash
pip install -r requirements/optional.txt
```
#### 依赖项
3. 检查 nvcc 的版本(要求大于等于 9.2,如果没有 GPU,可以跳过)
请首先安装以下的依赖项:
```bash
nvcc --version
```
- [Git](https://git-scm.com/download/win):安装期间,请选择 **add git to Path**
- [Visual Studio Community 2019](https://visualstudio.microsoft.com):用于编译 C++ 和 CUDA 代码
- [Miniconda](https://docs.conda.io/en/latest/miniconda.html):包管理工具
- [CUDA 10.2](https://developer.nvidia.com/cuda-10.2-download-archive):如果只需要 CPU 版本可以不安装 CUDA,安装CUDA时,可根据需要进行自定义安装。如果已经安装新版本的显卡驱动,建议取消驱动程序的安装
上述命令如果输出以下信息,表示 nvcc 的设置没有问题,否则需要设置 CUDA_HOME
```{note}
您需要知道如何在 Windows 上设置变量环境,尤其是 "PATH" 的设置,以下安装过程都会用到。
```
```
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Nov_30_19:08:53_PST_2020
Cuda compilation tools, release 11.2, V11.2.67
Build cuda_11.2.r11.2/compiler.29373293_0
```
#### 设置 Python 环境
:::{note}
如果想要支持 ROCm,可以参考 [AMD ROCm](https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html) 安装 ROCm。
:::
1. 从 Windows 菜单启动 Anaconda 命令行
4. 检查 gcc 的版本(要求大于等于**5.4**
```{note}
如 Miniconda 安装程序建议,不要使用原始的 `cmd.exe` 或是 `powershell.exe`。命令行有两个版本,一个基于 PowerShell,一个基于传统的 `cmd.exe`。请注意以下说明都是使用的基于 PowerShell
```
```bash
gcc --version
```
2. 创建一个新的 Conda 环境
5. 开始编译(预估耗时 10 分钟)
```shell
conda create --name mmcv python=3.7 # 经测试,3.6, 3.7, 3.8 也能通过
conda activate mmcv # 确保做任何操作前先激活环境
```bash
MMCV_WITH_OPS=1 pip install -e . -v
```
3. 安装 PyTorch 时,可以根据需要安装支持 CUDA 或不支持 CUDA 的版本
6. 验证安装
```shell
# CUDA version
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
# CPU version
conda install pytorch torchvision cpuonly -c pytorch
```bash
python .dev_scripts/check_installation.py
```
4. 准备 MMCV 源代码
如果上述命令没有报错,说明安装成功。如有报错,请查看[问题解决页面](https://mmcv.readthedocs.io/zh_CN/latest/faq.html)是否已经有解决方案。
如果没有找到解决方案,欢迎提 [issue](https://github.com/open-mmlab/mmcv/issues)
#### 在 macOS 上编译 mmcv-full
```shell
| TODO: 视频教程
```{note}
如果你使用的 mac 是 M1 芯片,请安装 PyTorch 的 nightly 版本,否则会遇到 [issues#2218](https://github.com/open-mmlab/mmcv/issues/2218) 中的问题。
```
1. 克隆代码仓库
```bash
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
```
5. 安装所需 Python 依赖包
2. 安装 `ninja``psutil` 以加快编译速度
```shell
pip3 install -r requirements/runtime.txt
```bash
pip install -r requirements/optional.txt
```
6. 建议安装 `ninja` 以加快编译速度
3. 开始编译
```bash
pip install -r requirements/optional.txt
MMCV_WITH_OPS=1 pip install -e .
```
#### 编译与安装 MMCV
4. 验证安装
MMCV 有三种安装的模式:
```bash
python .dev_scripts/check_installation.py
```
1. Lite 版本(不包含算子)
如果上述命令没有报错,说明安装成功。如有报错,请查看[问题解决页面](../faq.md)是否已经有解决方案。
这种方式下,没有算子被编译,这种模式的 mmcv 是原生的 python 包
如果没有找到解决方案,欢迎提 [issue](https://github.com/open-mmlab/mmcv/issues)
2. Full 版本(只包含 CPU 算子)
#### 在 Windows 上编译 mmcv-full
编译 CPU 算子,但只有 x86 将会被编译,并且编译版本只能在 CPU only 情况下运行
| TODO: 视频教程
3. Full 版本(既包含 CPU 算子,又包含 CUDA 算子)
在 Windows 上编译 mmcv-full 比 Linux 复杂,本节将一步步介绍如何在 Windows 上编译 mmcv-full。
同时编译 CPU 和 CUDA 算子,`ops` 模块的 x86 与 CUDA 的代码都可以被编译。同时编译的版本可以在 CUDA 上调用 GPU
##### 依赖项
请先安装以下的依赖项:
- [Git](https://git-scm.com/download/win):安装期间,请选择 **add git to Path**
- [Visual Studio Community 2019](https://visualstudio.microsoft.com):用于编译 C++ 和 CUDA 代码
- [Miniconda](https://docs.conda.io/en/latest/miniconda.html):包管理工具
- [CUDA 10.2](https://developer.nvidia.com/cuda-10.2-download-archive):如果只需要 CPU 版本可以不安装 CUDA,安装 CUDA 时,可根据需要进行自定义安装。如果已经安装新版本的显卡驱动,建议取消驱动程序的安装
```{note}
如果不清楚如何安装以上依赖,请参考[Windows 环境从零安装 mmcv-full](https://zhuanlan.zhihu.com/p/434491590)。
另外,你需要知道如何在 Windows 上设置变量环境,尤其是 "PATH" 的设置,以下安装过程都会用到。
```
##### 通用步骤
1. 设置 MSVC 编译器
1. 从 Windows 菜单启动 Anaconda 命令行
如 Miniconda 安装程序建议,不要使用原始的 `cmd.exe` 或是 `powershell.exe`。命令行有两个版本,一个基于 PowerShell,一个基于传统的 `cmd.exe`。请注意以下说明都是使用的基于 PowerShell
2. 创建一个新的 Conda 环境
```powershell
(base) PS C:\Users\xxx> conda create --name mmcv python=3.7
(base) PS C:\Users\xxx> conda activate mmcv # 确保做任何操作前先激活环境
```
3. 安装 PyTorch 时,可以根据需要安装支持 CUDA 或不支持 CUDA 的版本
```powershell
# CUDA version
(mmcv) PS C:\Users\xxx> conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
# CPU version
(mmcv) PS C:\Users\xxx> conda install install pytorch torchvision cpuonly -c pytorch
```
4. 克隆代码仓库
```powershell
(mmcv) PS C:\Users\xxx> git clone https://github.com/open-mmlab/mmcv.git
(mmcv) PS C:\Users\xxx> cd mmcv
```
5. 安装 `ninja``psutil` 以加快编译速度
```powershell
(mmcv) PS C:\Users\xxx\mmcv> pip install -r requirements/optional.txt
```
6. 安装 mmcv 依赖
```powershell
(mmcv) PS C:\Users\xxx\mmcv> pip install -r requirements/runtime.txt
```
7. 设置 MSVC 编译器
设置环境变量。添加 `C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.27.29110\bin\Hostx86\x64``PATH`,则 `cl.exe` 可以在命令行中运行,如下所示。
```none
(base) PS C:\Users\xxx> cl
```powershell
(mmcv) PS C:\Users\xxx\mmcv> cl
Microsoft (R) C/C++ Optimizing Compiler Version 19.27.29111 for x64
Copyright (C) Microsoft Corporation. All rights reserved.
......@@ -137,57 +204,45 @@ MMCV 有三种安装的模式:
因为 PyTorch 将解析 `cl.exe` 的输出以检查其版本,只有 utf-8 将会被识别,你可能需要将系统语言更改为英语。控制面板 -> 地区-> 管理-> 非 Unicode 来进行语言转换。
##### 安装方式一:Lite version(不包含算子)
##### 编译与安装 mmcv-full
在完成上述的公共步骤后,从菜单打开 Anaconda 命令框,输入以下命令
mmcv-full 有两个版本:
```shell
# 激活环境
conda activate mmcv
# 切换到 mmcv 根目录
cd mmcv
# 安装
python setup.py develop
# 检查是否安装成功
pip list
```
- 只包含 CPU 算子的版本
##### 安装方式二:Full version(只编译 CPU 算子)
编译 CPU 算子,但只有 x86 将会被编译,并且编译版本只能在 CPU only 情况下运行
1. 完成上述的公共步骤
- 既包含 CPU 算子,又包含 CUDA 算子的版本
2. 设置环境变量
同时编译 CPU 和 CUDA 算子,`ops` 模块的 x86 与 CUDA 的代码都可以被编译。同时编译的版本可以在 CUDA 上调用 GPU
```shell
$env:MMCV_WITH_OPS = 1
$env:MAX_JOBS = 8 # 根据你可用CPU以及内存量进行设置
```
###### CPU 版本
3. 编译安装
1. 设置环境变量
```shell
conda activate mmcv # 激活环境
cd mmcv # 改变路径
python setup.py build_ext # 如果成功, cl 将被启动用于编译算子
python setup.py develop # 安装
pip list # 检查是否安装成功
```powershell
(mmcv) PS C:\Users\xxx\mmcv> $env:MMCV_WITH_OPS = 1
```
##### 安装方式三:Full version(既编译 CPU 算子又编译 CUDA 算子)
2. 编译安装
1. 完成上述的公共步骤
```powershell
(mmcv) PS C:\Users\xxx\mmcv> python setup.py build_ext # 如果成功, cl 将被启动用于编译算子
(mmcv) PS C:\Users\xxx\mmcv> python setup.py develop # 安装
```
###### GPU 版本
2. 设置环境变量
1. 设置环境变量
```shell
$env:MMCV_WITH_OPS = 1
$env:MAX_JOBS = 8 # 根据你可用CPU以及内存量进行设置
```powershell
(mmcv) PS C:\Users\xxx\mmcv> $env:MMCV_WITH_OPS = 1
```
3. 检查 `CUDA_PATH` 或者 `CUDA_HOME` 环境变量已经存在在 `envs` 之中
2. 检查 `CUDA_PATH` 或者 `CUDA_HOME` 环境变量已经存在在 `envs` 之中
```none
(base) PS C:\Users\WRH> ls env:
```powershell
(mmcv) PS C:\Users\xxx\mmcv> ls env:
Name Value
---- -----
......@@ -198,38 +253,91 @@ pip list
如果没有,你可以按照下面的步骤设置
```shell
$env:CUDA_HOME = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2"
```powershell
(mmcv) PS C:\Users\xxx\mmcv> $env:CUDA_HOME = "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2"
# 或者
$env:CUDA_HOME = $env:CUDA_PATH_V10_2 # CUDA_PATH_V10_2 已经在环境变量中
(mmcv) PS C:\Users\xxx\mmcv> $env:CUDA_HOME = $env:CUDA_PATH_V10_2 # CUDA_PATH_V10_2 已经在环境变量中
```
4. 设置 CUDA 的目标架构
3. 设置 CUDA 的目标架构
```shell
$env:TORCH_CUDA_ARCH_LIST="6.1" # 支持 GTX 1080
# 或者用所有支持的版本,但可能会变得很慢
$env:TORCH_CUDA_ARCH_LIST="3.5 3.7 5.0 5.2 6.0 6.1 7.0 7.5"
```powershell
# 这里需要改成你的显卡对应的目标架构
(mmcv) PS C:\Users\xxx\mmcv> $env:TORCH_CUDA_ARCH_LIST="7.5"
```
```{note}
我们可以在 [here](https://developer.nvidia.com/cuda-gpus) 查看 GPU 的计算能力
```
:::{note}
可以点击 [cuda-gpus](https://developer.nvidia.com/cuda-gpus) 查看 GPU 的计算能力,也可以通过 CUDA 目录下的 deviceQuery.exe 工具查看
```powershell
(mmcv) PS C:\Users\xxx\mmcv> &"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite\deviceQuery.exe"
Device 0: "NVIDIA GeForce GTX 1660 SUPER"
CUDA Driver Version / Runtime Version 11.7 / 11.1
CUDA Capability Major/Minor version number: 7.5
```
上面的 7.5 表示目标架构。注意:需把上面命令的 v10.2 换成你的 CUDA 版本。
:::
5. 编译安装
4. 编译安装
```shell
$env:MMCV_WITH_OPS = 1
$env:MAX_JOBS = 8 # 根据你可用CPU以及内存量进行设置
conda activate mmcv # 激活环境
cd mmcv # 改变路径
python setup.py build_ext # 如果成功, cl 将被启动用于编译算子
python setup.py develop # 安装
pip list # 检查是否安装成功
```powershell
(mmcv) PS C:\Users\xxx\mmcv> python setup.py build_ext # 如果成功, cl 将被启动用于编译算子
(mmcv) PS C:\Users\xxx\mmcv> python setup.py develop # 安装
```
```{note}
如果你的 PyTorch 版本是 1.6.0,你可能会遇到一些这个 [issue](https://github.com/pytorch/pytorch/issues/42467) 提到的错误,则可以参考这个 [pull request](https://github.com/pytorch/pytorch/pull/43380/files) 修改 本地环境的 PyTorch 源代码
```{note}
如果你的 PyTorch 版本是 1.6.0,你可能会遇到一些 [issue](https://github.com/pytorch/pytorch/issues/42467) 提到的错误,你可以参考这个 [pull request](https://github.com/pytorch/pytorch/pull/43380/files) 修改本地环境的 PyTorch 源代码
```
##### 验证安装
```powershell
(mmcv) PS C:\Users\xxx\mmcv> python .dev_scripts/check_installation.py
```
如果编译安装 mmcv 的过程中遇到了问题,你也许可以在 [Frequently Asked Question](../faq.html) 找到解决方法
如果上述命令没有报错,说明安装成功。如有报错,请查看[问题解决页面](../faq.md)是否已经有解决方案。
如果没有找到解决方案,欢迎提 [issue](https://github.com/open-mmlab/mmcv/issues)
### 编译 mmcv
如果你需要使用和 PyTorch 相关的模块,请确保 PyTorch 已经成功安装在环境中,可以参考 [PyTorch 官方安装文档](https://pytorch.org/get-started/locally/#start-locally)
1. 克隆代码仓库
```bash
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
```
2. 开始编译
```bash
pip install -e . -v
```
3. 验证安装
```bash
python -c 'import mmcv;print(mmcv.__version__)'
```
### 在 IPU 机器编译 mmcv
首先你需要有可用的 IPU 云机器,可以查看[这里](https://www.graphcore.ai/ipus-in-the-cloud)
#### 选项1: 使用 Docker
1. 拉取镜像
```bash
docker pull graphcore/pytorch
```
2. 编译 mmcv
#### 选项2: 使用 SDK
1. 编译 mmcv
2. 参考 [IPU PyTorch document](https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/installation.html) 安装 sdk。
This diff is collapsed.
......@@ -21,15 +21,15 @@ MMCV 是一个面向计算机视觉的基础库,它支持了很多开源项目
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架
MMCV 提供了如下众多功能:
MMCV 提供了以下功能:
- 通用的 IO 接口
- 图像和视频处理
- 图像和标注结果可视化
- 常用小工具(进度条,计时器等)
- 基于 PyTorch 的通用训练框架
- 多种 CNN 网络结构
- 高质量实现的常见 CUDA 算子
- [通用的 IO 接口](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/io.html)
- [图像和视频处理](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/data_process.html)
- [图像和标注结果可视化](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/visualization.html)
- [常用小工具(进度条,计时器等)](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/utils.html)
- [基于 PyTorch 的通用训练框架](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/runner.html)
- [多种 CNN 网络结构](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/cnn.html)
- [高质量实现的 CPU 和 CUDA 算子](https://mmcv.readthedocs.io/zh_CN/latest/understand_mmcv/ops.html)
MMCV 支持以下的系统:
......@@ -37,7 +37,7 @@ MMCV 支持以下的系统:
- Windows
- macOS
如想了解更多特性和使用,请参考[文档](https://mmcv.readthedocs.io/zh_CN/latest)
欢迎查看[文档](http://mmcv.readthedocs.io/zh_CN/latest)了解更多特性和用法
```{note}
MMCV 需要 Python 3.6 以上版本。
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment