Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
MMCV
Commits
68a2c0a1
Unverified
Commit
68a2c0a1
authored
Mar 18, 2022
by
Wenhao Wu
Committed by
GitHub
Mar 18, 2022
Browse files
Update unittest for mmdet3d ops (#1811)
parent
e5ae1bfa
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
18 additions
and
6 deletions
+18
-6
tests/test_ops/test_gather_points.py
tests/test_ops/test_gather_points.py
+4
-0
tests/test_ops/test_roiaware_pool3d.py
tests/test_ops/test_roiaware_pool3d.py
+8
-0
tests/test_ops/test_roipoint_pool3d.py
tests/test_ops/test_roipoint_pool3d.py
+1
-1
tests/test_ops/test_scatter_points.py
tests/test_ops/test_scatter_points.py
+5
-5
No files found.
tests/test_ops/test_gather_points.py
View file @
68a2c0a1
...
@@ -45,3 +45,7 @@ def test_gather_points():
...
@@ -45,3 +45,7 @@ def test_gather_points():
[
-
0.7172
,
0.0462
,
-
0.6227
,
-
0.7172
,
-
0.7172
,
-
0.7172
]]]).
cuda
()
[
-
0.7172
,
0.0462
,
-
0.6227
,
-
0.7172
,
-
0.7172
,
-
0.7172
]]]).
cuda
()
assert
torch
.
allclose
(
output
,
expected_output
)
assert
torch
.
allclose
(
output
,
expected_output
)
# test fp16
output_half
=
gather_points
(
features
.
half
(),
idx
)
assert
torch
.
allclose
(
output_half
,
expected_output
.
half
())
tests/test_ops/test_roiaware_pool3d.py
View file @
68a2c0a1
...
@@ -133,3 +133,11 @@ def test_points_in_boxes_all():
...
@@ -133,3 +133,11 @@ def test_points_in_boxes_all():
dtype
=
torch
.
int32
).
cuda
()
dtype
=
torch
.
int32
).
cuda
()
assert
point_indices
.
shape
==
torch
.
Size
([
1
,
15
,
2
])
assert
point_indices
.
shape
==
torch
.
Size
([
1
,
15
,
2
])
assert
(
point_indices
==
expected_point_indices
).
all
()
assert
(
point_indices
==
expected_point_indices
).
all
()
if
torch
.
cuda
.
device_count
()
>
1
:
pts
=
pts
.
to
(
'cuda:1'
)
boxes
=
boxes
.
to
(
'cuda:1'
)
expected_point_indices
=
expected_point_indices
.
to
(
'cuda:1'
)
point_indices
=
points_in_boxes_all
(
points
=
pts
,
boxes
=
boxes
)
assert
point_indices
.
shape
==
torch
.
Size
([
1
,
15
,
2
])
assert
(
point_indices
==
expected_point_indices
).
all
()
tests/test_ops/test_roipoint_pool3d.py
View file @
68a2c0a1
...
@@ -7,7 +7,7 @@ from mmcv.ops import RoIPointPool3d
...
@@ -7,7 +7,7 @@ from mmcv.ops import RoIPointPool3d
@
pytest
.
mark
.
skipif
(
@
pytest
.
mark
.
skipif
(
not
torch
.
cuda
.
is_available
(),
reason
=
'requires CUDA support'
)
not
torch
.
cuda
.
is_available
(),
reason
=
'requires CUDA support'
)
def
test_
gather_
point
s
():
def
test_
roi
point
():
feats
=
torch
.
tensor
(
feats
=
torch
.
tensor
(
[[
1
,
2
,
3.3
],
[
1.2
,
2.5
,
3.0
],
[
0.8
,
2.1
,
3.5
],
[
1.6
,
2.6
,
3.6
],
[[
1
,
2
,
3.3
],
[
1.2
,
2.5
,
3.0
],
[
0.8
,
2.1
,
3.5
],
[
1.6
,
2.6
,
3.6
],
[
0.8
,
1.2
,
3.9
],
[
-
9.2
,
21.0
,
18.2
],
[
3.8
,
7.9
,
6.3
],
[
0.8
,
1.2
,
3.9
],
[
-
9.2
,
21.0
,
18.2
],
[
3.8
,
7.9
,
6.3
],
...
...
tests/test_ops/test_scatter_points.py
View file @
68a2c0a1
...
@@ -9,11 +9,6 @@ from mmcv.ops import DynamicScatter
...
@@ -9,11 +9,6 @@ from mmcv.ops import DynamicScatter
@
pytest
.
mark
.
skipif
(
@
pytest
.
mark
.
skipif
(
not
torch
.
cuda
.
is_available
(),
reason
=
'requires CUDA support'
)
not
torch
.
cuda
.
is_available
(),
reason
=
'requires CUDA support'
)
def
test_dynamic_scatter
():
def
test_dynamic_scatter
():
feats
=
torch
.
rand
(
size
=
(
200000
,
3
),
dtype
=
torch
.
float32
,
device
=
'cuda'
)
*
100
-
50
coors
=
torch
.
randint
(
low
=-
1
,
high
=
20
,
size
=
(
200000
,
3
),
dtype
=
torch
.
int32
,
device
=
'cuda'
)
dsmean
=
DynamicScatter
([
0.32
,
0.32
,
6
],
dsmean
=
DynamicScatter
([
0.32
,
0.32
,
6
],
[
-
74.88
,
-
74.88
,
-
2
,
74.88
,
74.88
,
4
],
True
)
[
-
74.88
,
-
74.88
,
-
2
,
74.88
,
74.88
,
4
],
True
)
dsmax
=
DynamicScatter
([
0.32
,
0.32
,
6
],
dsmax
=
DynamicScatter
([
0.32
,
0.32
,
6
],
...
@@ -53,6 +48,11 @@ def test_dynamic_scatter():
...
@@ -53,6 +48,11 @@ def test_dynamic_scatter():
assert
(
empty_o_feats
.
grad
==
0
).
all
()
assert
(
empty_o_feats
.
grad
==
0
).
all
()
# test non-empty input
# test non-empty input
feats
=
torch
.
rand
(
size
=
(
200000
,
3
),
dtype
=
torch
.
float32
,
device
=
'cuda'
)
*
100
-
50
coors
=
torch
.
randint
(
low
=-
1
,
high
=
20
,
size
=
(
200000
,
3
),
dtype
=
torch
.
int32
,
device
=
'cuda'
)
ref_voxel_coors
=
coors
.
unique
(
dim
=
0
,
sorted
=
True
)
ref_voxel_coors
=
coors
.
unique
(
dim
=
0
,
sorted
=
True
)
ref_voxel_coors
=
ref_voxel_coors
[
ref_voxel_coors
.
min
(
dim
=-
1
).
values
>=
0
]
ref_voxel_coors
=
ref_voxel_coors
[
ref_voxel_coors
.
min
(
dim
=-
1
).
values
>=
0
]
ref_voxel_feats_mean
=
[]
ref_voxel_feats_mean
=
[]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment