Commit 4b4ae17f authored by zhanggzh's avatar zhanggzh
Browse files

update readme

parent 3033d2c8
<div align="center"> # <div align="center"><strong>MMCV</strong></div>
<img src="https://raw.githubusercontent.com/open-mmlab/mmcv/main/docs/en/mmcv-logo.png" width="300"/> ## 简介
<div>&nbsp;</div> MMCV是计算机视觉研究的基础库,主要提供以下功能:图像处理、图像和标注结果可视化、图像转换、多种CNN网络结构、高质量实现的常见CUDA算子。DAS软件栈中的MMCV版本,不仅保证了组件核心功能在DCU加速卡的可用性,还针对DCU特有的硬件架构进行了深度定制优化。这使得开发者能够以极低的成本,轻松实现应用程序在DCU加速卡上的快速迁移和性能提升。
<div align="center">
<b><font size="5">OpenMMLab website</font></b> ## 安装
<sup> 组件支持组合
<a href="https://openmmlab.com">
<i><font size="4">HOT</font></i> | PyTorch版本 | fastpt版本 |MMCV版本 | DTK版本 | Python版本 | 推荐编译方式 |
</a> | ----------- | ----------- | ----------- | ------------------------ | -----------------| ------------ |
</sup> | 2.5.1 | 2.1.0 |2.1.0 | >= 25.04 | 3.8、3.10、3.11 | fastpt不转码 |
&nbsp;&nbsp;&nbsp;&nbsp; | 2.4.1 | 2.0.1 |2.1.0 | >= 25.04 | 3.8、3.10、3.11 | fastpt不转码 |
<b><font size="5">OpenMMLab platform</font></b> | 其他 | 其他 | 其他 | 其他 | 3.8、3.10、3.11 | hip转码 |
<sup>
<a href="https://platform.openmmlab.com"> + pytorch版本大于2.4.1 && dtk版本大于25.04 推荐使用fastpt不转码编译。
<i><font size="4">TRY IT OUT</font></i>
</a> ### 1、使用pip方式安装
</sup> mmcv whl包下载目录:[光和开发者社区](https://download.sourcefind.cn:65024/4/main/mmcv),选择对应的pytorch版本和python版本下载对应mmcv的whl包
</div> ```shell
<div>&nbsp;</div> pip install torch* (下载torch的whl包)
pip install fastpt* --no-deps (下载fastpt的whl包)
[![platform](https://img.shields.io/badge/platform-Linux%7CWindows%7CmacOS-blue)](https://mmcv.readthedocs.io/en/latest/get_started/installation.html) source /usr/local/bin/fastpt -E
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/mmcv)](https://pypi.org/project/mmcv/) pip install mmcv* (下载的mmcv-fastpt的whl包)
[![pytorch](https://img.shields.io/badge/pytorch-1.8~2.0-orange)](https://pytorch.org/get-started/previous-versions/) ```
[![cuda](https://img.shields.io/badge/cuda-10.1~11.8-green)](https://developer.nvidia.com/cuda-downloads) ### 2、使用源码编译方式安装
[![PyPI](https://img.shields.io/pypi/v/mmcv)](https://pypi.org/project/mmcv)
[![badge](https://github.com/open-mmlab/mmcv/workflows/build/badge.svg)](https://github.com/open-mmlab/mmcv/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmcv)
[![license](https://img.shields.io/github/license/open-mmlab/mmcv.svg)](https://github.com/open-mmlab/mmcv/blob/master/LICENSE)
[📘Documentation](https://mmcv.readthedocs.io/en/latest/) |
[🛠️Installation](https://mmcv.readthedocs.io/en/latest/get_started/installation.html) |
[🤔Reporting Issues](https://github.com/open-mmlab/mmcv/issues/new/choose)
</div>
<div align="center">
English | [简体中文](README_zh-CN.md)
</div>
## Highlights
The OpenMMLab team released a new generation of training engine [MMEngine](https://github.com/open-mmlab/mmengine) at the World Artificial Intelligence Conference on September 1, 2022. It is a foundational library for training deep learning models. Compared with MMCV, it provides a universal and powerful runner, an open architecture with a more unified interface, and a more customizable training process.
MMCV v2.0.0 official version was released on April 6, 2023. In version 2.x, it removed components related to the training process and added a data transformation module. Also, starting from 2.x, it renamed the package names **mmcv** to **mmcv-lite** and **mmcv-full** to **mmcv**. For details, see [Compatibility Documentation](docs/en/compatibility.md).
MMCV will maintain both [1.x](https://github.com/open-mmlab/mmcv/tree/1.x) (corresponding to the original [master](https://github.com/open-mmlab/mmcv/tree/master) branch) and **2.x** (corresponding to the **main** branch, now the default branch) versions simultaneously. For details, see [Branch Maintenance Plan](README.md#branch-maintenance-plan).
## Introduction
MMCV is a foundational library for computer vision research and it provides the following functionalities:
- [Image/Video processing](https://mmcv.readthedocs.io/en/latest/understand_mmcv/data_process.html)
- [Image and annotation visualization](https://mmcv.readthedocs.io/en/latest/understand_mmcv/visualization.html)
- [Image transformation](https://mmcv.readthedocs.io/en/latest/understand_mmcv/data_transform.html)
- [Various CNN architectures](https://mmcv.readthedocs.io/en/latest/understand_mmcv/cnn.html)
- [High-quality implementation of common CPU and CUDA ops](https://mmcv.readthedocs.io/en/latest/understand_mmcv/ops.html)
It supports the following systems:
- Linux
- Windows
- macOS
See the [documentation](http://mmcv.readthedocs.io/en/latest) for more features and usage.
Note: MMCV requires Python 3.7+.
## Installation
There are two versions of MMCV:
- **mmcv**: comprehensive, with full features and various CUDA ops out of the box. It takes longer time to build.
- **mmcv-lite**: lite, without CUDA ops but all other features, similar to mmcv\<1.0.0. It is useful when you do not need those CUDA ops.
**Note**: Do not install both versions in the same environment, otherwise you may encounter errors like `ModuleNotFound`. You need to uninstall one before installing the other. `Installing the full version is highly recommended if CUDA is available`.
### Install mmcv
Before installing mmcv, make sure that PyTorch has been successfully installed following the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation). For apple silicon users, please use PyTorch 1.13+. #### 编译环境准备
提供基于fastpt不转码编译:
The command to install mmcv: 1. 基于光源pytorch基础镜像环境:镜像下载地址:[光合开发者社区](https://sourcefind.cn/#/image/dcu/pytorch),根据pytorch、python、dtk及系统下载对应的镜像版本。
```bash 2. 基于现有python环境:安装pytorch,fastpt whl包下载目录:[光合开发者社区](https://sourcefind.cn/#/image/dcu/pytorch),根据python、dtk版本,下载对应pytorch的whl包。安装命令如下:
pip install -U openmim ```shell
mim install mmcv pip install torch* (下载torch的whl包)
pip install fastpt* --no-deps (下载fastpt的whl包, 安装顺序,先安装torch,后安装fastpt)
pip install setuptools==59.5.0 wheel
``` ```
If you need to specify the version of mmcv, you can use the following command: #### 源码编译安装
- 代码下载
```bash ```shell
mim install mmcv==2.0.0 git clone http://developer.sourcefind.cn/codes/OpenDAS/mmcv.git # 根据编译需要切换分支
``` ```
- 提供2种源码编译方式(进入mmcv目录):
If you find that the above installation command does not use a pre-built package ending with `.whl` but a source package ending with `.tar.gz`, you may not have a pre-build package corresponding to the PyTorch or CUDA or mmcv version, in which case you can [build mmcv from source](https://mmcv.readthedocs.io/en/latest/get_started/build.html).
<details>
<summary>Installation log using pre-built packages</summary>
Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html<br />
Collecting mmcv<br />
<b>Downloading https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/mmcv-2.0.0-cp38-cp38-manylinux1_x86_64.whl</b>
</details>
<details>
<summary>Installation log using source packages</summary>
Looking in links: https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html<br />
Collecting mmcv==2.0.0<br />
<b>Downloading mmcv-2.0.0.tar.gz</b>
</details>
For more installation methods, please refer to the [Installation documentation](https://mmcv.readthedocs.io/en/latest/get_started/installation.html).
### Install mmcv-lite
If you need to use PyTorch-related modules, make sure PyTorch has been successfully installed in your environment by referring to the [PyTorch official installation guide](https://github.com/pytorch/pytorch#installation).
```bash
pip install -U openmim
mim install mmcv-lite
``` ```
1. 设置不转码编译环境变量
export FORCE_CUDA=1
source /usr/local/bin/fastpt -C
## FAQ 2. 编译whl包并安装
MMCV_WITH_OPS=1 python3 setup.py -v bdist_wheel
If you face some installation issues, CUDA related issues or RuntimeErrors, pip install dist/mmcv*
you may first refer to this [Frequently Asked Questions](https://mmcv.readthedocs.io/en/latest/faq.html).
If you face installation problems or runtime issues, you may first refer to this [Frequently Asked Questions](https://mmcv.readthedocs.io/en/latest/faq.html) to see if there is a solution. If the problem is still not solved, feel free to open an [issue](https://github.com/open-mmlab/mmcv/issues).
## Citation 3. 源码编译安装
MMCV_WITH_OPS=1 python3 setup.py install
If you find this project useful in your research, please consider cite:
```latex
@misc{mmcv,
title={{MMCV: OpenMMLab} Computer Vision Foundation},
author={MMCV Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmcv}},
year={2018}
}
``` ```
#### 注意事项
+ 若使用pip install下载安装过慢,可添加pypi清华源:-i https://pypi.tuna.tsinghua.edu.cn/simple/
+ ROCM_PATH为dtk的路径,默认为/opt/dtk
+ 在pytorch2.5.1环境下编译需要支持c++17语法,打开setup.py文件,把文件中的 -std=c++14 修改为 -std=c++17
## Contributing ## 验证
- python -c "import mmcv; mmcv.\_\_version__",版本号与官方版本同步,查询该软件的版本号,例如2.1.0;
We appreciate all contributions to improve MMCV. Please refer to [CONTRIBUTING.md](CONTRIBUTING.md) for the contributing guideline.
## License
MMCV is released under the Apache 2.0 license, while some specific operations in this library are with other licenses. Please refer to [LICENSES.md](LICENSES.md) for the careful check, if you are using our code for commercial matters.
## Branch Maintenance Plan
MMCV currently has four branches, namely main, 1.x, master, and 2.x, where 2.x is an alias for the main branch, and master is an alias for the 1.x branch. The 2.x and master branches will be deleted in the future. MMCV's branches go through the following three stages:
| Phase | Time | Branch | description |
| -------------------- | --------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| RC Period | 2022.9.1 - 2023.4.5 | Release candidate code (2.x version) will be released on 2.x branch. Default master branch is still 1.x version | Master and 2.x branches iterate normally |
| Compatibility Period | 2023.4.6 - 2023.12.31 | **The 2.x branch has been renamed to the main branch and set as the default branch**, and 1.x branch will correspond to 1.x version | We still maintain the old version 1.x, respond to user needs, but try not to introduce changes that break compatibility; main branch iterates normally |
| Maintenance Period | From 2024/1/1 | Default main branch corresponds to 2.x version and 1.x branch is 1.x version | 1.x branch is in maintenance phase, no more new feature support; main branch is iterating normally |
## Projects in OpenMMLab ## Known Issue
-
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models. ## 参考资料
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision. - [README_ORIGIN](README_ORIGIN.md)
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages. - [README_zh-CN](README_zh-CN.md)
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark. - [https://github.com/open-mmlab/mmcv](https://github.com/open-mmlab/mmcv)
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment