"src/diffusers/image_processor.py" did not exist on "c0b4d72095b715c518f54d7111b539667320228e"
Unverified Commit 45fa3e44 authored by Zaida Zhou's avatar Zaida Zhou Committed by GitHub
Browse files

Add pyupgrade pre-commit hook (#1937)

* add pyupgrade

* add options for pyupgrade

* minor refinement
parent c561264d
......@@ -4,7 +4,7 @@ import pytest
import torch
class TestBoxIoURotated(object):
class TestBoxIoURotated:
def test_box_iou_rotated_cpu(self):
from mmcv.ops import box_iou_rotated
......
......@@ -3,7 +3,7 @@ import torch
from torch.autograd import gradcheck
class TestCarafe(object):
class TestCarafe:
def test_carafe_naive_gradcheck(self):
if not torch.cuda.is_available():
......
......@@ -15,7 +15,7 @@ class Loss(nn.Module):
return torch.mean(input - target)
class TestCrissCrossAttention(object):
class TestCrissCrossAttention:
def test_cc_attention(self):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
......
......@@ -35,7 +35,7 @@ gt_offset_bias_grad = [1.44, -0.72, 0., 0., -0.10, -0.08, -0.54, -0.54],
gt_deform_weight_grad = [[[[3.62, 0.], [0.40, 0.18]]]]
class TestDeformconv(object):
class TestDeformconv:
def _test_deformconv(self,
dtype=torch.float,
......
......@@ -35,7 +35,7 @@ outputs = [([[[[1, 1.25], [1.5, 1.75]]]], [[[[3.0625, 0.4375],
0.00390625]]]])]
class TestDeformRoIPool(object):
class TestDeformRoIPool:
def test_deform_roi_pool_gradcheck(self):
if not torch.cuda.is_available():
......
......@@ -37,7 +37,7 @@ sigmoid_outputs = [(0.13562961, [[-0.00657264, 0.11185755],
[-0.02462499, 0.08277918, 0.18050370]])]
class Testfocalloss(object):
class Testfocalloss:
def _test_softmax(self, dtype=torch.float):
if not torch.cuda.is_available():
......
......@@ -10,7 +10,7 @@ except ImportError:
_USING_PARROTS = False
class TestFusedBiasLeakyReLU(object):
class TestFusedBiasLeakyReLU:
@classmethod
def setup_class(cls):
......
......@@ -2,7 +2,7 @@
import torch
class TestInfo(object):
class TestInfo:
def test_info(self):
if not torch.cuda.is_available():
......
......@@ -2,7 +2,7 @@
import torch
class TestMaskedConv2d(object):
class TestMaskedConv2d:
def test_masked_conv2d(self):
if not torch.cuda.is_available():
......
......@@ -37,7 +37,7 @@ dcn_offset_b_grad = [
]
class TestMdconv(object):
class TestMdconv:
def _test_mdconv(self, dtype=torch.float, device='cuda'):
if not torch.cuda.is_available() and device == 'cuda':
......
......@@ -55,7 +55,7 @@ def test_forward_multi_scale_deformable_attn_pytorch():
N, M, D = 1, 2, 2
Lq, L, P = 2, 2, 2
shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long)
S = sum([(H * W).item() for H, W in shapes])
S = sum((H * W).item() for H, W in shapes)
torch.manual_seed(3)
value = torch.rand(N, S, M, D) * 0.01
......@@ -78,7 +78,7 @@ def test_forward_equal_with_pytorch_double():
shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda()
level_start_index = torch.cat((shapes.new_zeros(
(1, )), shapes.prod(1).cumsum(0)[:-1]))
S = sum([(H * W).item() for H, W in shapes])
S = sum((H * W).item() for H, W in shapes)
torch.manual_seed(3)
value = torch.rand(N, S, M, D).cuda() * 0.01
......@@ -111,7 +111,7 @@ def test_forward_equal_with_pytorch_float():
shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda()
level_start_index = torch.cat((shapes.new_zeros(
(1, )), shapes.prod(1).cumsum(0)[:-1]))
S = sum([(H * W).item() for H, W in shapes])
S = sum((H * W).item() for H, W in shapes)
torch.manual_seed(3)
value = torch.rand(N, S, M, D).cuda() * 0.01
......@@ -155,7 +155,7 @@ def test_gradient_numerical(channels,
shapes = torch.as_tensor([(3, 2), (2, 1)], dtype=torch.long).cuda()
level_start_index = torch.cat((shapes.new_zeros(
(1, )), shapes.prod(1).cumsum(0)[:-1]))
S = sum([(H * W).item() for H, W in shapes])
S = sum((H * W).item() for H, W in shapes)
value = torch.rand(N, S, M, channels).cuda() * 0.01
sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
......
......@@ -6,7 +6,7 @@ import torch
from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
class Testnms(object):
class Testnms:
@pytest.mark.parametrize('device', [
pytest.param(
......@@ -129,8 +129,7 @@ class Testnms(object):
scores = tensor_dets[:, 4]
nms_keep_inds = nms(boxes.contiguous(), scores.contiguous(),
iou_thr)[1]
assert set([g[0].item()
for g in np_groups]) == set(nms_keep_inds.tolist())
assert {g[0].item() for g in np_groups} == set(nms_keep_inds.tolist())
# non empty tensor input
tensor_dets = torch.from_numpy(np_dets)
......
......@@ -33,7 +33,7 @@ def run_before_and_after_test():
class WrapFunction(nn.Module):
def __init__(self, wrapped_function):
super(WrapFunction, self).__init__()
super().__init__()
self.wrapped_function = wrapped_function
def forward(self, *args, **kwargs):
......@@ -662,7 +662,7 @@ def test_cummax_cummin(key, opset=11):
input_list = [
# arbitrary shape, e.g. 1-D, 2-D, 3-D, ...
torch.rand((2, 3, 4, 1, 5)),
torch.rand((1)),
torch.rand(1),
torch.rand((2, 0, 1)), # tensor.numel() is 0
torch.FloatTensor(), # empty tensor
]
......
......@@ -15,7 +15,7 @@ class Loss(nn.Module):
return torch.mean(input - target)
class TestPSAMask(object):
class TestPSAMask:
def test_psa_mask_collect(self):
if not torch.cuda.is_available():
......
......@@ -29,7 +29,7 @@ outputs = [([[[[1., 2.], [3., 4.]]]], [[[[1., 1.], [1., 1.]]]]),
1.]]]])]
class TestRoiPool(object):
class TestRoiPool:
def test_roipool_gradcheck(self):
if not torch.cuda.is_available():
......
......@@ -14,7 +14,7 @@ else:
import re
class TestSyncBN(object):
class TestSyncBN:
def dist_init(self):
rank = int(os.environ['SLURM_PROCID'])
......
......@@ -30,7 +30,7 @@ if not is_tensorrt_plugin_loaded():
class WrapFunction(nn.Module):
def __init__(self, wrapped_function):
super(WrapFunction, self).__init__()
super().__init__()
self.wrapped_function = wrapped_function
def forward(self, *args, **kwargs):
......@@ -576,7 +576,7 @@ def test_cummin_cummax(func: Callable):
input_list = [
# arbitrary shape, e.g. 1-D, 2-D, 3-D, ...
torch.rand((2, 3, 4, 1, 5)).cuda(),
torch.rand((1)).cuda()
torch.rand(1).cuda()
]
input_names = ['input']
......@@ -756,7 +756,7 @@ def test_corner_pool(mode):
class CornerPoolWrapper(CornerPool):
def __init__(self, mode):
super(CornerPoolWrapper, self).__init__(mode)
super().__init__(mode)
def forward(self, x):
# no use `torch.cummax`, instead `corner_pool` is used
......
......@@ -10,7 +10,7 @@ except ImportError:
_USING_PARROTS = False
class TestUpFirDn2d(object):
class TestUpFirDn2d:
"""Unit test for UpFirDn2d.
Here, we just test the basic case of upsample version. More gerneal tests
......
......@@ -96,8 +96,8 @@ def test_voxelization_nondeterministic():
coors_all = dynamic_voxelization.forward(points)
coors_all = coors_all.cpu().detach().numpy().tolist()
coors_set = set([tuple(c) for c in coors])
coors_all_set = set([tuple(c) for c in coors_all])
coors_set = {tuple(c) for c in coors}
coors_all_set = {tuple(c) for c in coors_all}
assert len(coors_set) == len(coors)
assert len(coors_set - coors_all_set) == 0
......@@ -112,7 +112,7 @@ def test_voxelization_nondeterministic():
for c, ps, n in zip(coors, voxels, num_points_per_voxel):
ideal_voxel_points_set = coors_points_dict[tuple(c)]
voxel_points_set = set([tuple(p) for p in ps[:n]])
voxel_points_set = {tuple(p) for p in ps[:n]}
assert len(voxel_points_set) == n
if n < max_num_points:
assert voxel_points_set == ideal_voxel_points_set
......@@ -133,7 +133,7 @@ def test_voxelization_nondeterministic():
voxels, coors, num_points_per_voxel = hard_voxelization.forward(points)
coors = coors.cpu().detach().numpy().tolist()
coors_set = set([tuple(c) for c in coors])
coors_all_set = set([tuple(c) for c in coors_all])
coors_set = {tuple(c) for c in coors}
coors_all_set = {tuple(c) for c in coors_all}
assert len(coors_set) == len(coors) == len(coors_all_set)
......@@ -63,7 +63,7 @@ def test_is_module_wrapper():
# test module wrapper registry
@MODULE_WRAPPERS.register_module()
class ModuleWrapper(object):
class ModuleWrapper:
def __init__(self, module):
self.module = module
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment