Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
MMCV
Commits
2611b990
Unverified
Commit
2611b990
authored
Jun 01, 2023
by
qipengh
Committed by
GitHub
Jun 01, 2023
Browse files
[Refactor] Replace carafe op of MLU backend with mlu-ops (#2817)
parent
7ff7095c
Changes
4
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
40 additions
and
1051 deletions
+40
-1051
mmcv/ops/csrc/common/mlu/carafe_mlu_kernel.mlu
mmcv/ops/csrc/common/mlu/carafe_mlu_kernel.mlu
+0
-552
mmcv/ops/csrc/common/mlu/carafe_utils.hpp
mmcv/ops/csrc/common/mlu/carafe_utils.hpp
+0
-95
mmcv/ops/csrc/common/mlu/common_mlu_helper.hpp
mmcv/ops/csrc/common/mlu/common_mlu_helper.hpp
+0
-142
mmcv/ops/csrc/pytorch/mlu/carafe_mlu.cpp
mmcv/ops/csrc/pytorch/mlu/carafe_mlu.cpp
+40
-262
No files found.
mmcv/ops/csrc/common/mlu/carafe_mlu_kernel.mlu
deleted
100644 → 0
View file @
7ff7095c
This diff is collapsed.
Click to expand it.
mmcv/ops/csrc/common/mlu/carafe_utils.hpp
deleted
100644 → 0
View file @
7ff7095c
/*************************************************************************
* Copyright (C) 2022 Cambricon.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*************************************************************************/
#ifndef CARAFE_UTILS_HPP_
#define CARAFE_UTILS_HPP_
#define NRAM_ALIGN_SIZE 64
struct
CarafeForwardParam
{
int
N
;
// batch size
int
Hi
;
// input height
int
Wi
;
// input width
int
Ci
;
// input channels
int
Ho
;
// output height
int
Wo
;
// output width
int
Cg
;
// channels per group
int
kernel_size
;
// kernel_size
int
group_size
;
// group_size
int
scale_factor
;
// scale_factor
int
kernel_size_half
;
// kernel half size (K-1)/2
int
kernel_size_sq
;
// square of kernel size
int
dtype_size
;
// size of tensor data type
// Host arrays' geometry
int
input_stride_g
;
int
input_stride_w
;
int
input_stride_h
;
int
input_stride_n
;
int
input_size
;
int
mask_stride_kh
;
int
mask_stride_g
;
int
mask_stride_w
;
int
mask_stride_h
;
int
mask_stride_n
;
int
mask_size
;
int
output_stride_g
;
int
output_stride_w
;
int
output_stride_h
;
int
output_stride_n
;
int
output_size
;
// NRAM arrays' geometry
int
input_nram_stride_g
;
int
input_nram_stride_w
;
int
input_nram_stride_h
;
int
input_nram_size
;
int
mask_nram_stride_kh
;
int
mask_nram_stride_g
;
int
mask_nram_stride_w
;
int
mask_nram_stride_h
;
int
mask_nram_size
;
int
output_nram_stride_g
;
int
output_nram_stride_w
;
int
output_nram_stride_h
;
int
output_nram_size
;
// for address/compute alignment
int
align_size_NRAM
;
// for addressing on NRAM
int
align_size_NFU
;
// for NFU operation length
int
block_Cg_NFU
;
// for bang_mul_const
int
job_num
;
// total job number
};
struct
CarafeForwardBlockDim
{
int
Ho
;
// block size of output height
int
Wo
;
// block size of output width
int
Kh
;
// block size of kernel height
int
Kw
;
// block size of kernel width
int
G
;
// block size of groups
int
Cg
;
// block size of channels within a group
int
Hi
;
// block size of input height
int
Wi
;
// block size of input width
};
struct
CarafeForwardGridDim
{
int
Ho
;
// number of blocks of output height
int
Wo
;
int
Kh
;
int
Kw
;
int
G
;
int
Cg
;
};
#endif // CARAFE_UTILS_HPP_
mmcv/ops/csrc/common/mlu/common_mlu_helper.hpp
View file @
2611b990
...
...
@@ -45,148 +45,6 @@ __mlu_func__ inline scalar_t max(scalar_t a, scalar_t b) {
return
a
>
b
?
a
:
b
;
}
/*!
* @brief loads data from global DRAM to NRAM with 2D pattern.
*
* @param[out] dst
* Pointer to NRAM that stores dst data.
* @param[in] src
* Pointer to global DRAM that stores src data.
* @param[in] size
* The byte size of segment in the lower dimension.
* @param[in] dst_str
* The data stride in bytes between segments in the lower dimension of dst.
* @param[in] src_str
* The data stride in bytes between segments in the lower dimension of src.
* @param[in] seg_num
* The total count of data segments in the lower dimension.
*/
template
<
typename
T
>
__mlu_func__
void
loadStr2D
(
T
*
dst
,
T
*
src
,
const
int
size
,
const
int
dst_str
,
const
int
src_str
,
const
int
seg_num
)
{
if
(
dst_str
==
src_str
&&
size
==
src_str
)
{
__memcpy
(
dst
,
src
,
src_str
*
seg_num
*
sizeof
(
T
),
GDRAM2NRAM
);
}
else
if
((
size
==
src_str
||
src_str
<=
dst_str
)
&&
src_str
*
sizeof
(
T
)
<=
512
)
{
// gather data less than 512Bytes to improve IO efficiency
T
*
tmp
=
(
T
*
)
dst
+
(
dst_str
-
src_str
)
*
seg_num
;
__memcpy
(
tmp
,
src
,
(
src_str
*
(
seg_num
-
1
)
+
size
)
*
sizeof
(
T
),
GDRAM2NRAM
);
if
(
dst_str
!=
src_str
)
{
__memcpy
(
dst
,
tmp
,
size
*
sizeof
(
T
),
NRAM2NRAM
,
dst_str
*
sizeof
(
T
),
src_str
*
sizeof
(
T
),
seg_num
-
1
);
}
}
else
{
__memcpy
(
dst
,
src
,
size
*
sizeof
(
T
),
GDRAM2NRAM
,
dst_str
*
sizeof
(
T
),
src_str
*
sizeof
(
T
),
seg_num
-
1
);
}
}
/*!
* @brief loads data from global DRAM to NRAM with 3D pattern.
*
* @param[out] dst
* Pointer to NRAM that stores dst data.
* @param[in] src
* Pointer to global DRAM that stores src data.
* @param[in] size
* The byte size of segment in the lowest dimension.
* @param[in] seg_num_in
* The total count of data segments in the lowest dimension.
* @param[in] seg_num_out
* The total count of data segments in the middle dimension.
* @param[in] dst_str_in
* The data stride in bytes between segments in the lowest dimension of dst.
* @param[in] dst_str_out
* The data stride in bytes between segments in the middle dimension of dst.
* @param[in] src_str_in
* The data stride in bytes between segments in the lowest dimension of src.
* @param[in] src_str_out
* The data stride in bytes between segments in the middle dimension of src.
*/
template
<
typename
T
>
__mlu_func__
void
loadStr3D
(
T
*
dst
,
T
*
src
,
const
int
size
,
const
int
seg_num_in
,
const
int
seg_num_out
,
const
int
dst_str_in
,
const
int
dst_str_out
,
const
int
src_str_in
,
const
int
src_str_out
)
{
T
*
tmp_dst
=
dst
;
T
*
tmp_src
=
src
;
for
(
int
i
=
0
;
i
<
seg_num_out
;
++
i
)
{
loadStr2D
(
tmp_dst
,
tmp_src
,
size
,
dst_str_in
,
src_str_in
,
seg_num_in
);
tmp_src
+=
src_str_out
;
tmp_dst
+=
dst_str_out
;
}
}
/*!
* @brief stores data from NRAM to global DRAM with 2D pattern.
*
* @param[out] dst
* Pointer to global DRAM that stores dst data.
* @param[in] src
* Pointer to NRAM that stores src data.
* @param[in] size
* The byte size of segment in the lower dimension.
* @param[in] dst_str
* The data stride in bytes between segments in the lower dimension of dst.
* @param[in] src_str
* The data stride in bytes between segments in the lower dimension of src.
* @param[in] seg_num
* The total count of data segments in the lower dimension.
*/
template
<
typename
T
>
__mlu_func__
void
storeStr2D
(
T
*
dst
,
T
*
src
,
const
int
size
,
const
int
seg_num
,
const
int
dst_str
,
const
int
src_str
)
{
if
((
size
==
dst_str
&&
dst_str
<=
src_str
)
&&
dst_str
*
sizeof
(
T
)
<=
512
)
{
// gather data less than 512Bytes to improve IO efficiency
if
(
dst_str
!=
src_str
)
{
__memcpy
(
src
,
src
,
size
*
sizeof
(
T
),
NRAM2NRAM
,
dst_str
*
sizeof
(
T
),
src_str
*
sizeof
(
T
),
seg_num
-
1
);
}
__memcpy
(
dst
,
src
,
size
*
seg_num
*
sizeof
(
T
),
NRAM2GDRAM
);
}
else
{
__memcpy
(
dst
,
src
,
size
*
sizeof
(
T
),
NRAM2GDRAM
,
dst_str
*
sizeof
(
T
),
src_str
*
sizeof
(
T
),
seg_num
-
1
);
}
}
/*!
* @brief stores data from NRAM to global DRAM with 3D pattern.
*
* @param[out] dst
* Pointer to global DRAM that stores dst data.
* @param[in] src
* Pointer to NRAM that stores src data.
* @param[in] size
* The byte size of segment in the lowest dimension.
* @param[in] seg_num_in
* The total count of data segments in the lowest dimension.
* @param[in] seg_num_out
* The total count of data segments in the middle dimension.
* @param[in] dst_str_in
* The data stride in bytes between segments in the lowest dimension of dst.
* @param[in] dst_str_out
* The data stride in bytes between segments in the middle dimension of dst.
* @param[in] src_str_in
* The data stride in bytes between segments in the lowest dimension of src.
* @param[in] src_str_out
* The data stride in bytes between segments in the middle dimension of src.
*/
template
<
typename
T
>
__mlu_func__
void
storeStr3D
(
T
*
dst
,
T
*
src
,
const
int
size
,
const
int
seg_num_in
,
const
int
seg_num_out
,
const
int
dst_str_in
,
const
int
dst_str_out
,
const
int
src_str_in
,
const
int
src_str_out
)
{
T
*
tmp_dst
=
dst
;
T
*
tmp_src
=
src
;
for
(
int
i
=
0
;
i
<
seg_num_out
;
++
i
)
{
storeStr2D
(
tmp_dst
,
tmp_src
,
size
,
seg_num_in
,
dst_str_in
,
src_str_in
);
tmp_src
+=
src_str_out
;
tmp_dst
+=
dst_str_out
;
}
}
/*!
* @brief Converts int32 to float32 data type.
*
...
...
mmcv/ops/csrc/pytorch/mlu/carafe_mlu.cpp
View file @
2611b990
...
...
@@ -9,200 +9,13 @@
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*************************************************************************/
#include "carafe_utils.hpp"
#include "pytorch_device_registry.hpp"
#include "pytorch_mlu_helper.hpp"
void
KernelCarafeForward
(
cnrtDim3_t
k_dim
,
cnrtFunctionType_t
k_type
,
cnrtQueue_t
queue
,
const
cnrtDataType_t
d_type
,
const
void
*
input
,
const
void
*
mask
,
const
CarafeForwardParam
&
param
,
const
CarafeForwardBlockDim
&
block_dim
,
const
CarafeForwardGridDim
&
grid_dim
,
void
*
output
);
void
KernelCarafeBackward
(
cnrtDim3_t
k_dim
,
cnrtFunctionType_t
k_type
,
cnrtQueue_t
queue
,
cnrtDataType_t
dtype
,
const
void
*
input
,
const
void
*
mask
,
const
void
*
grad_output
,
void
*
grad_input
,
void
*
grad_mask
,
const
int
n
,
const
int
hi
,
const
int
wi
,
const
int
c
,
const
int
k_up
,
const
int
group
,
const
int
scale
);
// Get total NRAM usage and set strides of NRAM arrays.
static
void
getNramUsage
(
CarafeForwardParam
*
param
,
CarafeForwardBlockDim
*
block_dim
,
int
*
nram_usage
)
{
// input_nram[blkDim_(Hi+Kh)-1, blkDim_(Wi+Kw)-1, blkDim_G, blkDim_Cg]
block_dim
->
Hi
=
CEIL_DIV
(
block_dim
->
Ho
,
param
->
scale_factor
)
+
1
;
block_dim
->
Wi
=
CEIL_DIV
(
block_dim
->
Wo
,
param
->
scale_factor
)
+
1
;
param
->
input_nram_stride_g
=
PAD_UP
(
block_dim
->
Cg
,
param
->
align_size_NRAM
);
param
->
input_nram_stride_w
=
param
->
input_nram_stride_g
*
block_dim
->
G
;
param
->
input_nram_stride_h
=
(
block_dim
->
Wi
+
block_dim
->
Kw
-
1
)
*
param
->
input_nram_stride_w
;
param
->
input_nram_size
=
(
block_dim
->
Hi
+
block_dim
->
Kh
-
1
)
*
param
->
input_nram_stride_h
;
// mask_nram[blkDim_Ho, blkDim_Wo, blkDim_G, blkDim_Kh, blkDim_Kw]
param
->
mask_nram_stride_kh
=
block_dim
->
Kw
;
param
->
mask_nram_stride_g
=
block_dim
->
Kh
*
param
->
mask_nram_stride_kh
;
param
->
mask_nram_stride_w
=
block_dim
->
G
*
param
->
mask_nram_stride_g
;
param
->
mask_nram_stride_h
=
block_dim
->
Wo
*
param
->
mask_nram_stride_w
;
param
->
mask_nram_size
=
PAD_UP
(
block_dim
->
Ho
*
param
->
mask_nram_stride_h
,
param
->
align_size_NRAM
);
// output_nram[blkDim_Ho, blkDim_Wo, blkDim_(G*Cg)]
param
->
output_nram_stride_g
=
param
->
input_nram_stride_g
;
param
->
output_nram_stride_w
=
PAD_UP
(
param
->
input_nram_stride_w
,
param
->
align_size_NFU
);
param
->
output_nram_stride_h
=
block_dim
->
Wo
*
param
->
output_nram_stride_w
;
param
->
output_nram_size
=
block_dim
->
Ho
*
param
->
output_nram_stride_h
;
// sum_array[blkDim_(G*Cg)]
// ensure the last mul_const on Cg does not exceed memory boundary
int
sum_array_size_bang_mul_const
=
(
block_dim
->
G
-
1
)
*
param
->
input_nram_stride_g
+
PAD_UP
(
param
->
input_nram_stride_g
,
param
->
align_size_NFU
);
int
sum_array_size
=
std
::
max
(
param
->
output_nram_stride_w
,
sum_array_size_bang_mul_const
);
*
nram_usage
=
param
->
input_nram_size
+
param
->
mask_nram_size
+
param
->
output_nram_size
+
sum_array_size
;
}
// Policy Function for Forward
static
void
genPolicyForward
(
CarafeForwardParam
*
param
,
CarafeForwardBlockDim
*
block_dim
,
CarafeForwardGridDim
*
grid_dim
,
cnrtDim3_t
*
k_dim
,
cnrtFunctionType_t
*
k_type
)
{
// device info
auto
core_dim
=
torch_mlu
::
getDeviceAttr
(
cnrtAttrMcorePerCluster
);
auto
cluster_num
=
torch_mlu
::
getDeviceAttr
(
cnrtAttrClusterCount
);
auto
core_num
=
core_dim
*
cluster_num
;
// maximum NRAM size as the number of <dtype>
auto
max_nram_size
=
torch_mlu
::
getDeviceAttr
(
cnrtAttrNramSizePerMcore
)
/
param
->
dtype_size
;
// determine grid and block dimensions
// set initial values for block_dim and grid_dim
block_dim
->
Ho
=
param
->
Ho
;
block_dim
->
Wo
=
param
->
Wo
;
block_dim
->
Kh
=
param
->
kernel_size
;
block_dim
->
Kw
=
param
->
kernel_size
;
block_dim
->
G
=
param
->
group_size
;
block_dim
->
Cg
=
param
->
Cg
;
grid_dim
->
Ho
=
1
;
grid_dim
->
Wo
=
1
;
grid_dim
->
Kh
=
1
;
grid_dim
->
Kw
=
1
;
grid_dim
->
G
=
1
;
grid_dim
->
Cg
=
1
;
// decrease the block size to fit in the NRAM.
int
nram_usage
=
0
;
while
(
true
)
{
getNramUsage
(
param
,
block_dim
,
&
nram_usage
);
if
(
nram_usage
>
max_nram_size
)
{
// decrease Ho
// decrease block_Ho and block_Wo evenly
// so that the block is close to a square.
if
(
block_dim
->
Ho
>
1
&&
block_dim
->
Ho
>=
block_dim
->
Wo
)
{
grid_dim
->
Ho
+=
1
;
block_dim
->
Ho
=
CEIL_DIV
(
param
->
Ho
,
grid_dim
->
Ho
);
}
else
if
(
block_dim
->
Wo
>
1
&&
block_dim
->
Wo
>
block_dim
->
Ho
)
{
// decrease Wo
grid_dim
->
Wo
+=
1
;
block_dim
->
Wo
=
CEIL_DIV
(
param
->
Wo
,
grid_dim
->
Wo
);
}
else
if
(
block_dim
->
Kh
>
1
)
{
// decrease Kh
grid_dim
->
Kh
+=
1
;
block_dim
->
Kh
=
CEIL_DIV
(
param
->
kernel_size
,
grid_dim
->
Kh
);
// reset Hi, Wi to maximize NRAM usage
grid_dim
->
Ho
=
1
;
block_dim
->
Ho
=
param
->
Ho
;
grid_dim
->
Wo
=
1
;
block_dim
->
Wo
=
param
->
Wo
;
}
else
if
(
block_dim
->
Kw
>
1
)
{
// decrease Kw
grid_dim
->
Kw
+=
1
;
block_dim
->
Kw
=
CEIL_DIV
(
param
->
kernel_size
,
grid_dim
->
Kw
);
// reset Kh
grid_dim
->
Kh
=
1
;
block_dim
->
Kh
=
param
->
kernel_size
;
}
else
if
(
block_dim
->
G
>
1
)
{
// decrease G
grid_dim
->
G
+=
1
;
block_dim
->
G
=
CEIL_DIV
(
param
->
group_size
,
grid_dim
->
G
);
// reset Kw
grid_dim
->
Kw
=
1
;
block_dim
->
Kw
=
param
->
kernel_size
;
}
else
if
(
block_dim
->
Cg
>
1
)
{
// decrease block_Cg
// This is done in the last since c is the continuous dim
// (input layout is NHWC) and large c can improve
// IO & compute efficiency.
grid_dim
->
Cg
+=
1
;
block_dim
->
Cg
=
CEIL_DIV
(
param
->
Cg
,
grid_dim
->
Cg
);
// reset G
grid_dim
->
G
=
1
;
block_dim
->
G
=
param
->
group_size
;
}
else
{
// the block volume is one now, cannot decrease the block size anymore!
// this situation should not occur.
break
;
}
}
else
{
break
;
}
}
// define parameters depending on block_dim, grid_dim
param
->
block_Cg_NFU
=
PAD_UP
(
block_dim
->
Cg
,
param
->
align_size_NFU
);
// define host arrays' strides
// input[N,H,W,G,Cg]
param
->
input_stride_g
=
param
->
Cg
;
param
->
input_stride_w
=
param
->
Ci
;
param
->
input_stride_h
=
param
->
Wi
*
param
->
input_stride_w
;
param
->
input_stride_n
=
param
->
Hi
*
param
->
input_stride_h
;
// mask[N,Ho,Wo,G,Kh,Kw]
param
->
mask_stride_kh
=
param
->
kernel_size
;
param
->
mask_stride_g
=
param
->
kernel_size
*
param
->
mask_stride_kh
;
param
->
mask_stride_w
=
param
->
group_size
*
param
->
mask_stride_g
;
param
->
mask_stride_h
=
param
->
Wo
*
param
->
mask_stride_w
;
param
->
mask_stride_n
=
param
->
Ho
*
param
->
mask_stride_h
;
// output[N,Ho,Wo,G,Cg]
param
->
output_stride_g
=
param
->
Cg
;
param
->
output_stride_w
=
param
->
Ci
;
param
->
output_stride_h
=
param
->
Wo
*
param
->
output_stride_w
;
param
->
output_stride_n
=
param
->
Ho
*
param
->
output_stride_h
;
param
->
job_num
=
param
->
N
*
grid_dim
->
Ho
*
grid_dim
->
Wo
*
grid_dim
->
G
*
grid_dim
->
Cg
;
// determine task type and dims
*
k_type
=
CNRT_FUNC_TYPE_BLOCK
;
k_dim
->
x
=
std
::
min
(
param
->
job_num
,
static_cast
<
int
>
(
core_num
));
k_dim
->
y
=
1
;
k_dim
->
z
=
1
;
}
#include "mlu_common_helper.h"
void
CARAFEForwardMLUKernelLauncher
(
const
Tensor
input
,
const
Tensor
mask
,
Tensor
rinput
,
Tensor
routput
,
Tensor
rmask
,
Tensor
output
,
const
int
kernel_size
,
const
int
group_size
,
const
int
scale_factor
)
{
const
int
batch_size
=
output
.
size
(
0
);
const
int
channels
=
output
.
size
(
1
);
const
int
ho
=
output
.
size
(
2
);
const
int
wo
=
output
.
size
(
3
);
// check tensor data type
TORCH_CHECK
(
input
.
scalar_type
()
==
at
::
kFloat
||
input
.
scalar_type
()
==
at
::
kHalf
,
...
...
@@ -221,37 +34,10 @@ void CARAFEForwardMLUKernelLauncher(const Tensor input, const Tensor mask,
// return fast on zero-element tensor
if
(
output
.
numel
()
==
0
)
{
output
=
at
::
zeros
(
{
batch_size
,
channels
,
ho
,
wo
}
,
output
.
options
());
output
=
at
::
zeros
(
output
.
sizes
().
vec
()
,
output
.
options
());
return
;
}
// set param
CarafeForwardParam
param
;
param
.
N
=
input
.
size
(
0
);
param
.
Ci
=
input
.
size
(
1
);
param
.
Hi
=
input
.
size
(
2
);
param
.
Wi
=
input
.
size
(
3
);
param
.
kernel_size
=
kernel_size
;
param
.
group_size
=
group_size
;
param
.
scale_factor
=
scale_factor
;
param
.
Cg
=
param
.
Ci
/
group_size
;
param
.
dtype_size
=
input
.
itemsize
();
param
.
align_size_NRAM
=
NRAM_ALIGN_SIZE
/
param
.
dtype_size
;
param
.
align_size_NFU
=
NFU_ALIGN_SIZE
/
param
.
dtype_size
;
param
.
kernel_size_sq
=
param
.
kernel_size
*
param
.
kernel_size
;
param
.
kernel_size_half
=
(
param
.
kernel_size
-
1
)
/
2
;
param
.
Ho
=
param
.
Hi
*
param
.
scale_factor
;
param
.
Wo
=
param
.
Wi
*
param
.
scale_factor
;
// generate policy
cnrtDim3_t
k_dim
;
cnrtFunctionType_t
k_type
;
CarafeForwardBlockDim
block_dim
;
CarafeForwardGridDim
grid_dim
;
genPolicyForward
(
&
param
,
&
block_dim
,
&
grid_dim
,
&
k_dim
,
&
k_type
);
// convert NCHW to NHWC
auto
memory_format_input_nhwc
=
torch_mlu
::
cnnl
::
ops
::
get_channels_last_memory_format
(
input
.
dim
());
...
...
@@ -268,6 +54,12 @@ void CARAFEForwardMLUKernelLauncher(const Tensor input, const Tensor mask,
auto
routput_
=
torch_mlu
::
cnnl
::
ops
::
cnnl_contiguous
(
output
,
memory_format_output_nhwc
);
// set tensor descriptor
MluOpTensorDescriptor
input_desc
,
mask_desc
,
output_desc
;
input_desc
.
set_with_layout
(
rinput_
,
MLUOP_LAYOUT_NHWC
);
mask_desc
.
set_with_layout
(
rmask_
,
MLUOP_LAYOUT_NHWC
);
output_desc
.
set_with_layout
(
routput_
,
MLUOP_LAYOUT_NHWC
);
// get ptr of tensors
auto
input_impl
=
torch_mlu
::
getMluTensorImpl
(
rinput_
);
auto
input_ptr
=
input_impl
->
cnnlMalloc
();
...
...
@@ -276,45 +68,29 @@ void CARAFEForwardMLUKernelLauncher(const Tensor input, const Tensor mask,
auto
output_impl
=
torch_mlu
::
getMluTensorImpl
(
routput_
);
auto
output_ptr
=
output_impl
->
cnnlMalloc
();
//
g
et
compute queue
auto
queue
=
torch_mlu
::
getCurQueu
e
();
// get dtype of input
cnrtDataType_t
d_type
=
torch_mlu
::
toCnrtDtype
(
input
.
dtype
());
//
s
et
op descriptor
auto
handle
=
mluOpGetCurrentHandl
e
();
mluOpCarafeDescriptor_t
carafe_desc
;
mluOpCreateCarafeDescriptor
(
&
carafe_desc
);
mluOpSetCarafeDescriptor
(
carafe_desc
,
input
.
dim
(),
kernel_size
,
group_size
,
scale_factor
);
// launch kernel
auto
core_dim
=
torch_mlu
::
getDeviceAttr
(
cnrtAttrMcorePerCluster
);
CNLOG
(
INFO
)
<<
"Launch Kernel KernelCarafeForward<<<Union"
<<
k_type
/
core_dim
<<
", "
<<
k_dim
.
x
<<
", "
<<
k_dim
.
y
<<
", "
<<
k_dim
.
z
<<
">>>"
;
KernelCarafeForward
(
k_dim
,
k_type
,
queue
,
d_type
,
input_ptr
,
mask_ptr
,
param
,
block_dim
,
grid_dim
,
output_ptr
);
mluOpCarafeForward
(
handle
,
carafe_desc
,
input_desc
.
desc
(),
input_ptr
,
mask_desc
.
desc
(),
mask_ptr
,
output_desc
.
desc
(),
output_ptr
);
// destroy op descriptor
mluOpDestroyCarafeDescriptor
(
carafe_desc
);
// copy output from NHWC back into NCHW
rinput
.
copy_
(
rinput_
);
output
.
copy_
(
routput_
);
}
// Policy Function for Backward
static
void
policyFuncBackward
(
cnrtDim3_t
*
k_dim
,
cnrtFunctionType_t
*
k_type
)
{
// set Union1 Job
*
k_type
=
CNRT_FUNC_TYPE_UNION1
;
k_dim
->
x
=
torch_mlu
::
getDeviceAttr
(
cnrtAttrMcorePerCluster
);
k_dim
->
y
=
torch_mlu
::
getDeviceAttr
(
cnrtAttrClusterCount
);
k_dim
->
z
=
1
;
}
void
CARAFEBackwardMLUKernelLauncher
(
const
Tensor
grad_output
,
const
Tensor
rinput
,
const
Tensor
mask
,
Tensor
rgrad_output
,
Tensor
rgrad_input_hs
,
Tensor
rgrad_input
,
Tensor
rgrad_mask
,
Tensor
grad_input
,
Tensor
grad_mask
,
const
int
kernel_size
,
const
int
group_size
,
const
int
scale_factor
)
{
const
int
batch_size
=
rinput
.
size
(
0
);
const
int
channels
=
rinput
.
size
(
1
);
const
int
hi
=
rinput
.
size
(
2
);
const
int
wi
=
rinput
.
size
(
3
);
// data type check
TORCH_CHECK
(
grad_output
.
scalar_type
()
==
at
::
kFloat
||
grad_output
.
scalar_type
()
==
at
::
kHalf
,
...
...
@@ -331,11 +107,6 @@ void CARAFEBackwardMLUKernelLauncher(
TORCH_CHECK
(
kernel_size
<
137
,
"kernel_size should be less than 137, got "
,
kernel_size
);
// set task dimension
cnrtDim3_t
k_dim
;
cnrtFunctionType_t
k_type
;
policyFuncBackward
(
&
k_dim
,
&
k_type
);
// convert NCHW to NHWC
auto
memory_format_input_nhwc
=
torch_mlu
::
cnnl
::
ops
::
get_channels_last_memory_format
(
rinput
.
dim
());
...
...
@@ -363,8 +134,15 @@ void CARAFEBackwardMLUKernelLauncher(
auto
rgrad_mask_
=
torch_mlu
::
cnnl
::
ops
::
cnnl_contiguous
(
grad_mask
,
memory_format_grad_mask_nhwc
);
// get compute queue
auto
queue
=
torch_mlu
::
getCurQueue
();
// set tensor descriptor
MluOpTensorDescriptor
input_desc
,
mask_desc
;
input_desc
.
set_with_layout
(
rinput_
,
MLUOP_LAYOUT_NHWC
);
mask_desc
.
set_with_layout
(
rmask_
,
MLUOP_LAYOUT_NHWC
);
MluOpTensorDescriptor
grad_output_desc
,
grad_input_desc
,
grad_mask_desc
;
grad_output_desc
.
set_with_layout
(
rgrad_output_
,
MLUOP_LAYOUT_NHWC
);
grad_input_desc
.
set_with_layout
(
rgrad_input_
,
MLUOP_LAYOUT_NHWC
);
grad_mask_desc
.
set_with_layout
(
rgrad_mask_
,
MLUOP_LAYOUT_NHWC
);
// get ptr of tensors
auto
input_impl
=
torch_mlu
::
getMluTensorImpl
(
rinput_
);
...
...
@@ -378,19 +156,19 @@ void CARAFEBackwardMLUKernelLauncher(
auto
grad_mask_impl
=
torch_mlu
::
getMluTensorImpl
(
rgrad_mask_
);
auto
grad_mask_ptr
=
grad_mask_impl
->
cnnlMalloc
();
// get dtype of grad_output
cnrtDataType_t
d_type
=
torch_mlu
::
toCnrtDtype
(
grad_output
.
dtype
());
auto
core_dim
=
torch_mlu
::
getDeviceAttr
(
cnrtAttrMcorePerCluster
);
CNLOG
(
INFO
)
<<
"Launch Kernel KernelCarafeBackward<<<Union"
<<
k_type
/
core_dim
<<
", "
<<
k_dim
.
x
<<
", "
<<
k_dim
.
y
<<
", "
<<
k_dim
.
z
<<
">>>"
;
// set op descriptor
auto
handle
=
mluOpGetCurrentHandle
();
mluOpCarafeDescriptor_t
carafe_desc
;
mluOpCreateCarafeDescriptor
(
&
carafe_desc
);
mluOpSetCarafeDescriptor
(
carafe_desc
,
grad_output
.
dim
(),
kernel_size
,
group_size
,
scale_factor
);
// launch kernel
KernelCarafeBackward
(
k_dim
,
k_type
,
queue
,
d_type
,
input_ptr
,
mask_ptr
,
grad_output_ptr
,
grad_input_ptr
,
grad_mask_ptr
,
batch_size
,
hi
,
wi
,
channels
,
kernel_size
,
group_size
,
scale_factor
);
mluOpCarafeBackward
(
handle
,
carafe_desc
,
input_desc
.
desc
(),
input_ptr
,
mask_desc
.
desc
(),
mask_ptr
,
grad_output_desc
.
desc
(),
grad_output_ptr
,
grad_input_desc
.
desc
(),
grad_input_ptr
,
grad_mask_desc
.
desc
(),
grad_mask_ptr
);
// destroy op descriptor
mluOpDestroyCarafeDescriptor
(
carafe_desc
);
// copy output from NHWC back into NCHW
grad_input
.
copy_
(
rgrad_input_
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment