# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import random import numpy as np import torch import torchvision.transforms as T from torchvision import datasets from megatron import get_args from megatron.data.image_folder import ImageFolder from megatron.data.autoaugment import ImageNetPolicy from megatron.data.data_samplers import RandomSeedDataset class ClassificationTransform(): def __init__(self, image_size, train=True): args = get_args() assert args.fp16 or args.bf16 self.data_type = torch.half if args.fp16 else torch.bfloat16 if train: self.transform = T.Compose([ T.RandomResizedCrop(image_size), T.RandomHorizontalFlip(), T.ColorJitter(0.4, 0.4, 0.4, 0.1), ImageNetPolicy(), T.ToTensor(), T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), T.ConvertImageDtype(self.data_type) ]) else: self.transform = T.Compose([ T.Resize(image_size), T.CenterCrop(image_size), T.ToTensor(), T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), T.ConvertImageDtype(self.data_type) ]) def __call__(self, input): output = self.transform(input) return output def build_train_valid_datasets(data_path, image_size=224): args = get_args() train_transform = ClassificationTransform(image_size) val_transform = ClassificationTransform(image_size, train=False) # training dataset train_data_path = data_path[0] train_data = ImageFolder( root=train_data_path, transform=train_transform, classes_fraction=args.classes_fraction, data_per_class_fraction=args.data_per_class_fraction ) train_data = RandomSeedDataset(train_data) # validation dataset val_data_path = data_path[1] val_data = ImageFolder( root=val_data_path, transform=val_transform ) val_data = RandomSeedDataset(val_data) return train_data, val_data