# coding=utf-8 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classification model.""" import torch from megatron import get_args from megatron.model.bert_model import bert_attention_mask_func from megatron.model.bert_model import bert_extended_attention_mask from megatron.model.bert_model import bert_position_ids from megatron.model.language_model import get_language_model from megatron.model.utils import get_linear_layer from megatron.model.utils import init_method_normal from megatron.model.utils import scaled_init_method_normal from megatron.module import MegatronModule from megatron import print_rank_0 class Classification(MegatronModule): def __init__(self, num_classes, num_tokentypes=2): super(Classification, self).__init__() args = get_args() self.num_classes = num_classes init_method = init_method_normal(args.init_method_std) self.language_model, self._language_model_key = get_language_model( attention_mask_func=bert_attention_mask_func, num_tokentypes=num_tokentypes, add_pooler=True, init_method=init_method, scaled_init_method=scaled_init_method_normal(args.init_method_std, args.num_layers)) # Multi-choice head. self.classification_dropout = torch.nn.Dropout(args.hidden_dropout) self.classification_head = get_linear_layer(args.hidden_size, self.num_classes, init_method) self._classification_head_key = 'classification_head' def forward(self, input_ids, attention_mask, tokentype_ids): extended_attention_mask = bert_extended_attention_mask( attention_mask, next(self.language_model.parameters()).dtype) position_ids = bert_position_ids(input_ids) _, pooled_output = self.language_model(input_ids, position_ids, extended_attention_mask, tokentype_ids=tokentype_ids) # Output. classification_output = self.classification_dropout(pooled_output) classification_logits = self.classification_head(classification_output) # Reshape back to separate choices. classification_logits = classification_logits.view(-1, self.num_classes) return classification_logits def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False): """For easy load when model is combined with other heads, add an extra key.""" state_dict_ = {} state_dict_[self._language_model_key] \ = self.language_model.state_dict_for_save_checkpoint( destination, prefix, keep_vars) state_dict_[self._classification_head_key] \ = self.classification_head.state_dict( destination, prefix, keep_vars) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" self.language_model.load_state_dict( state_dict[self._language_model_key], strict=strict) if self._classification_head_key in state_dict: self.classification_head.load_state_dict( state_dict[self._classification_head_key], strict=strict) else: print_rank_0('***WARNING*** could not find {} in the checkpoint, ' 'initializing to random'.format( self._classification_head_key))