# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. """Multimodal tokenizer.""" from dataclasses import dataclass from typing import Dict, List, Union import numpy as np from megatron.core.datasets.megatron_tokenizer import MegatronTokenizer # Mark tokens that will be ignored in the loss function with this value. # Same ignore_index in https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html from megatron.core.models.multimodal.llava_model import IGNORE_INDEX, IMAGE_TOKEN IMAGE_TAGS = { "nvlm": ("", ""), "internvl": ("", ""), "": None, # Image tag not used. } # The default mistral template raises exceptions so we use a custom one. mistral_custom_template = """ {{- bos_token }} {%- for message in messages %} {%- if message['role'] == 'user' %} {{- '[INST] ' + message['content'] + '[/INST]' }} {%- elif message['role'] == 'assistant' %} {{- ' ' + message['content'] + eos_token}} {%- endif %} {%- endfor %} {% if add_generation_prompt %}{{ ' ' }}{% endif %} """ nvlm_yi_34b_template = "{{- bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" qwen2p0_custom_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" @dataclass class PromptConfig: """Config options for different prompt formats.""" # How many tokens are used for the assistant prefix, e.g. "<|im_start|>assistant\n". # Used for masking the assistant prefix. assistant_prefix_len: int # Padding token ID. pad_token_id: int # For overriding the default chat format template. custom_chat_template: str # If the tokenizer inserts BOS token by default. has_bos: bool # If the tokenizer supports a separate role for system messages. has_system_role: bool class MultimodalTokenizer(MegatronTokenizer): """Multimodal Tokenizer.""" def __init__( self, tokenizer: MegatronTokenizer, prompt_format: str, special_tokens: List[str], image_tag_type: str, ): """Tokenizer with a support for non-text inputs. Note: Currently, only HuggingFaceTokenizer is supported as the underlying text tokenizer. Args: tokenizer (MegatronTokenizer): Underlying tokenizer. prompt_format (str): Prompt format for the tokenizer. special_tokens (List[str]): Non-text tokens. image_tag_type (str): Image tag to apply, if any. For example . """ self._vocab_size = len(tokenizer) num_added_tokens = tokenizer.add_tokens(special_tokens, special_tokens=True) assert num_added_tokens == len( special_tokens ), f"failed to add {len(special_tokens)} special tokens; only added {num_added_tokens}" self._tokenizer = tokenizer if prompt_format == "mistral": # Mistral format doesn't have prefix for the assistant message. self._prompt_config = PromptConfig( assistant_prefix_len=0, pad_token_id=tokenizer.unk_token_id, custom_chat_template=mistral_custom_template, has_bos=True, has_system_role=False, ) elif prompt_format == "llama3": # "<|start_header_id|>assistant<|end_header|>\n\n" is the prefix for assistant messages. self._prompt_config = PromptConfig( assistant_prefix_len=4, pad_token_id=tokenizer.convert_tokens_to_ids("<|end_of_text|>"), custom_chat_template=None, has_bos=True, has_system_role=True, ) elif prompt_format == "nvlm-yi-34b": self._prompt_config = PromptConfig( assistant_prefix_len=4, pad_token_id=tokenizer.pad_token_id, custom_chat_template=nvlm_yi_34b_template, has_bos=True, has_system_role=True, ) elif prompt_format == "chatml": # "<|im_start|>assistant\n" is the prefix for assistant messages self._prompt_config = PromptConfig( assistant_prefix_len=3, pad_token_id=tokenizer.pad_token_id, custom_chat_template=None, has_bos=False, has_system_role=True, ) elif prompt_format == "qwen2p0": # "<|im_start|>assistant\n" is the prefix for assistant messages self._prompt_config = PromptConfig( assistant_prefix_len=3, pad_token_id=tokenizer.pad_token_id, custom_chat_template=qwen2p0_custom_template, has_bos=False, has_system_role=True, ) else: raise NotImplementedError("unknown multimodal tokenizer type", prompt_format) self._image_tag = IMAGE_TAGS[image_tag_type] def _apply_image_tag(self, text: Union[str, List[Dict]]): """Surround with image tags such as and .""" if self._image_tag is None: return text replacement = f"{self._image_tag[0]}{IMAGE_TOKEN}{self._image_tag[1]}" if isinstance(text, list): for turn in text: turn["content"] = turn["content"].replace(IMAGE_TOKEN, replacement) else: text = text.replace(IMAGE_TOKEN, replacement) return text def tokenize(self, text: Union[str, List[Dict]]): """Tokenize conversation or string input.""" if isinstance(text, list): # This code path is used by the inference code currently. return self.tokenize_conversation(text, False, True).tolist() return self._encode(text) def _encode(self, text: str): """Tokenize text input.""" text = self._apply_image_tag(text) return self._tokenizer.encode(text) def tokenize_conversation( self, conversation: List[Dict], return_target: bool, add_generation_prompt: bool ): """Convert a conversation to tokens. Args: conversation (List[Dict]): Sequence of system/user/assistant messages. Must be in the following format: [ {"role": "user", "content": "something"}, {"role": "assistant", "content": "something2"}, ] return_target (bool): Return target tokens with system and assistant masked. add_generation_prompt (bool): Add assistant prefix to the end. """ # Skip system message if the tokenizer doesn't have a system role. if not self._prompt_config.has_system_role and conversation[0]["role"] == "system": conversation = conversation[1:] # Apply possible image tag. conversation = self._apply_image_tag(conversation) tokens = self._tokenizer.apply_chat_template( conversation, tokenize=True, add_generation_prompt=add_generation_prompt, return_assistant_token_mask=False, return_tensors="np", chat_template=self._prompt_config.custom_chat_template, )[0] if not return_target: return tokens target = tokens.copy() # Mask system and user tokens in the target. idx = 0 for turn_idx, turn in enumerate(conversation): if len(turn["content"]) == 0: raise ValueError(f"empty turn in conversation: {conversation}. Skipping.") turn_tokens = self._tokenizer.apply_chat_template( [turn], tokenize=True, chat_template=self._prompt_config.custom_chat_template ) # There should be only one BOS at the very beginning. # After the first turn, skip BOS token. if self._prompt_config.has_bos and turn_idx > 0: turn_tokens = turn_tokens[1:] turn_len = len(turn_tokens) role = turn["role"] if role in ("system", "user"): target[idx : idx + turn_len] = IGNORE_INDEX elif role == "assistant": if IMAGE_TOKEN in turn["content"]: raise RuntimeError(f"{IMAGE_TOKEN} not allowed in assistant content!") if self._prompt_config.assistant_prefix_len > 0: target[idx : idx + self._prompt_config.assistant_prefix_len] = IGNORE_INDEX assert np.allclose( tokens[idx : idx + turn_len], turn_tokens ), f"expected turn tokens to match tokens in conversation {conversation}" idx += turn_len assert idx == len(tokens), f"mismatch in target masking the conversation {conversation}" return tokens, target def convert_tokens_to_ids(self, tokens: List[str]): """Convert tokens to IDs.""" return self._tokenizer.convert_tokens_to_ids(tokens) def detokenize(self, tokens: List[int]): """Detokenize tokens.""" return self._tokenizer.decode(tokens) def get_special_tokens(self): """Get special tokens.""" return self._tokenizer.get_added_vocab() @property def pad(self): """Pad token ID.""" return self._prompt_config.pad_token_id @property def eod(self): """End of sentence token ID.""" return self._tokenizer.eos_token_id @property def vocab(self): """Vocab.""" return NotImplementedError("not used") @property def inv_vocab(self): """Inverse vocab.""" return NotImplementedError("not used") @property def vocab_size(self): """Vocabulary size.""" return self._vocab_size