import os import sys from argparse import Namespace import torch import pretrain_t5 from megatron.core.inference.common_inference_params import CommonInferenceParams from megatron.core.inference.engines.abstract_engine import AbstractEngine from megatron.core.inference.engines.mcore_engine import MCoreEngine from megatron.core.inference.inference_request import InferenceRequest from megatron.core.inference.model_inference_wrappers.inference_wrapper_config import ( InferenceWrapperConfig, ) from megatron.core.inference.model_inference_wrappers.t5.t5_inference_wrapper import ( T5InferenceWrapper, ) from megatron.core.inference.text_generation_controllers.encoder_decoder_text_generation_controller import ( EncoderDecoderTextGenerationController, ) from megatron.core.transformer.module import MegatronModule from pretrain_t5 import model_provider sys.path.append( os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir, os.path.pardir)) ) from typing import List from megatron.core import mpu from megatron.training import get_args, get_model, get_tokenizer from megatron.training.checkpointing import load_checkpoint from megatron.training.initialize import initialize_megatron def add_text_generate_args(parser): """Text generation arguments.""" group = parser.add_argument_group(title='text generation') group.add_argument("--temperature", type=float, default=1.0, help='Sampling temperature.') group.add_argument("--top_k", type=int, default=1, help='Top k sampling.') group.add_argument("--top_p", type=float, default=0.0, help='Top p sampling.') group.add_argument( "--return-log-probs", action='store_true', default=False, help='Return the log probabilities of the final output tokens', ) group.add_argument( "--num-tokens-to-generate", type=int, default=30, help='Number of tokens to generate for each prompt', ) group.add_argument( "--encoder-prompts", metavar='N', type=str, nargs='+', help='Encoder input prompts with each prompt within quotes and seperated by space', ) group.add_argument( "--max-batch-size", type=int, default=1, help='Max number of prompts to process at once' ) return parser def get_inference_engine(args: Namespace, model: MegatronModule) -> AbstractEngine: """Utility to get the relevant backend for running inference This function will automatically chose the TRTLLMBackend when possible, and if not revert to Mcore backend if the user does not specify any backends. TRT LLM Backend is not implmented yet. Args: args (Namespace): The user arguments parsed from command line model (MegatronModule): The megatron model . Returns: AbstractBackend: The chosen backend """ tokenizer = get_tokenizer() inference_wrapper_config = InferenceWrapperConfig( hidden_size=args.hidden_size, inference_batch_times_seqlen_threshold=args.inference_batch_times_seqlen_threshold, fp32_residual_connection=args.fp32_residual_connection, params_dtype=args.params_dtype, padded_vocab_size=args.padded_vocab_size, ) inference_wrapped_model = T5InferenceWrapper(model, inference_wrapper_config) text_generation_controller = EncoderDecoderTextGenerationController( inference_wrapped_model=inference_wrapped_model, tokenizer=tokenizer ) return MCoreEngine( text_generation_controller=text_generation_controller, max_batch_size=args.max_batch_size ) def main(): """Main program.""" # Note: The default args passed here can be overwritten by using appropriate params (check arguments.py file) # Micro batch size is not needed to be set by user. (It is calculated based on inference-batch-times-seqlen-threshold argument) initialize_megatron( extra_args_provider=add_text_generate_args, args_defaults={ 'no_load_rng': True, 'no_load_optim': True, 'micro_batch_size': 1, 'exit_on_missing_checkpoint': True, }, ) # Set up model and load checkpoint model = get_model(model_provider, wrap_with_ddp=False) load_checkpoint(model, None, None) model = model[0] args = get_args() inference_engine = get_inference_engine(args, model) common_inference_params = CommonInferenceParams( temperature=args.temperature, top_k=args.top_k, top_p=args.top_p, return_log_probs=args.return_log_probs, num_tokens_to_generate=args.num_tokens_to_generate, ) tokenizer = get_tokenizer() decoder_prompts = [""] * len( args.encoder_prompts ) # for T5, the prompt is provided as encoder input, hence decoder_prompts is empty args.prompts = decoder_prompts results: List[InferenceRequest] = inference_engine.generate( prompts=args.prompts, add_BOS=True, encoder_prompts=args.encoder_prompts, common_inference_params=common_inference_params, ) if torch.distributed.get_rank() == 0: for idx, result in enumerate(results): print(f' \n------------- RESULT FOR PROMPT {idx} --------------- ') result = { 'id': result.request_id, 'input_prompt': result.prompt, 'generated_text': result.generated_text, 'generated_tokens': result.generated_tokens, } print(result) if __name__ == "__main__": main()