import argparse from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer # Set up argument parsing parser = argparse.ArgumentParser(description="Script for text generation with a specific model and prompt.") parser.add_argument('--prompt', type=str, required=True, help="Prompt text to use for text generation") parser.add_argument('--model-path', type=str, required=True, help="Path to the Huggingface model checkpoint") # Parse command-line arguments args = parser.parse_args() model_path = args.model_path prompt = args.prompt config = AutoConfig.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path, config=config) model = AutoModelForCausalLM.from_pretrained(model_path, config=config).cuda() inputs = tokenizer(prompt, return_tensors="pt") for key in inputs: inputs[key] = inputs[key].cuda() # top_k, top_p and do_sample are set for greedy argmax based sampling outputs = model.generate(**inputs, max_length=100, do_sample=False, top_p=0, top_k=0, temperature=1.0) print(tokenizer.decode(outputs[0], skip_special_tokens=True))