#!/bin/bash # Stage-1: Prompt a pretrained language model to generate the context-relevant knowledge # The input contains prompts and current dialogue context, the output is the relevant knowledge # The size of the pretrained language model is 357M WORLD_SIZE=8 DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \ --nnodes 1 \ --node_rank 0 \ --master_addr localhost \ --master_port 6000" CHECKPOINT_PATH= (e.g., /357m) VOCAB_PATH= (e.g., /gpt2-vocab.json) MERGE_PATH= (e.g., /gpt2-merges.txt) INPUT_PATH= \ (e.g., /testseen_processed.txt) PROMPT_PATH= \ (e.g., /testseen_knowledge_prompts.json) OUTPUT_PATH= \ (e.g., /testseen_knowledge_generations.txt) python -m torch.distributed.launch $DISTRIBUTED_ARGS ./tasks/msdp/main.py \ --num-layers 24 \ --hidden-size 1024 \ --num-attention-heads 16 \ --seq-length 2048 \ --max-position-embeddings 2048 \ --micro-batch-size 1 \ --vocab-file ${VOCAB_PATH} \ --merge-file ${MERGE_PATH} \ --load ${CHECKPOINT_PATH} \ --fp16 \ --DDP-impl torch \ --tokenizer-type GPT2BPETokenizer \ --sample-input-file ${INPUT_PATH} \ --sample-output-file ${OUTPUT_PATH} \ --prompt-file ${PROMPT_PATH} \ --prompt-type knowledge \ --num-prompt-examples 10 \ --task MSDP-PROMPT # NOTE: If you use api for the model generation, please use # the "--api-prompt" flag (setting this value as True).