# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. """Fine-tune GPT""" import torch from functools import partial import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir, os.path.pardir))) from megatron.training import get_args from megatron.training import get_timers from megatron.training import get_tokenizer from megatron.training import print_rank_0 from megatron.core import mpu from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder from megatron.core.datasets.blended_megatron_dataset_config import GPTDatasetConfig from megatron.core.datasets.gpt_dataset import GPTDataset from megatron.core.datasets.utils import get_blend_from_list from megatron.legacy.model import GPTModel from megatron.core.enums import ModelType from megatron.training import pretrain from megatron.training.utils import get_ltor_masks_and_position_ids from megatron.training.utils import average_losses_across_data_parallel_group def model_provider(pre_process=True, post_process=True): """Build the model.""" print_rank_0('building GPT model ...') model = GPTModel( num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process ) return model def get_batch(data_iterator): """Generate a batch""" args = get_args() tokenizer = get_tokenizer() # Items and their type. keys = ['text'] datatype = torch.int64 # Broadcast data. if data_iterator is not None: data = next(data_iterator) else: data = None data_b = mpu.broadcast_data(keys, data, datatype) # Unpack. tokens_ = data_b['text'].long() labels = tokens_[:, 1:].contiguous() tokens = tokens_[:, :-1].contiguous() # Get the masks and postition ids. attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( tokens, tokenizer.eod, args.reset_position_ids, args.reset_attention_mask, args.eod_mask_loss) return tokens, labels, loss_mask, attention_mask, position_ids def loss_func(loss_mask, output_tensor): losses = output_tensor.float() loss_mask = loss_mask.view(-1).float() loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() # Reduce loss for logging. averaged_loss = average_losses_across_data_parallel_group([loss]) return loss, {'lm loss': averaged_loss[0]} def forward_step(data_iterator, model): """Forward step.""" args = get_args() timers = get_timers() # Get the batch. timers('batch-generator').start() tokens, labels, loss_mask, attention_mask, position_ids = get_batch( data_iterator) timers('batch-generator').stop() output_tensor = model(tokens, position_ids, attention_mask, labels=labels) return output_tensor, partial(loss_func, loss_mask) def train_valid_test_datasets_provider(train_val_test_num_samples): """Build train, valid, and test datasets.""" args = get_args() print_rank_0('> building train, validation, and test datasets ' 'for GPT ...') train_ds, _, test_ds = BlendedMegatronDatasetBuilder( GPTDataset, train_val_test_num_samples, lambda: True, GPTDatasetConfig( blend=get_blend_from_list(args.data_path), split=args.split, random_seed=args.seed, sequence_length=args.seq_length, path_to_cache=args.data_cache_path, return_document_ids=False ) ).build() print_rank_0("> finished creating finetuning GPT datasets ...") _, valid_ds, _ = BlendedMegatronDatasetBuilder( GPTDataset, train_val_test_num_samples, lambda: True, GPTDatasetConfig( blend=get_blend_from_list(args.data_path2), split="98,2,0", random_seed=1234, sequence_length=2048, path_to_cache=args.data_cache_path, return_document_ids=False ) ).build() print_rank_0("> finished creating pretrained GPT datasets ...") return train_ds, valid_ds, test_ds def add_validation_args(parser): """Text generation arguments.""" group = parser.add_argument_group(title='validation set') group.add_argument('--data-path2', nargs='*', default=None, help='Path to the validation dataset. Accepted format:' '1) a single data path, 2) multiple datasets in the' 'form: dataset1-weight dataset1-path dataset2-weight ' 'dataset2-path ...') group.add_argument('--eval-ppl', action='store_true', default=False) group.add_argument('--stored_params', type=dict, default=dict()) return parser if __name__ == "__main__": pretrain(train_valid_test_datasets_provider, model_provider, ModelType.encoder_or_decoder, forward_step, args_defaults={'tokenizer_type': 'GPT2BPETokenizer'}, extra_args_provider=add_validation_args,)