# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluation utilities.""" import os import torch from megatron import get_args from megatron import print_rank_0 from megatron import mpu from tasks.vision.finetune_utils import build_data_loader from tasks.vision.finetune_utils import process_batch from torchvision import datasets, transforms def accuracy_func_provider(): """Provide function that calculates accuracies.""" args = get_args() data_path = args.data_path crop_size = args.img_dim # mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] # Build dataloaders. val_data_path = os.path.join(data_path[0], "val") normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) transform_val = transforms.Compose( [ transforms.Resize(crop_size), transforms.CenterCrop(crop_size), transforms.ToTensor(), normalize, ] ) dataset = datasets.ImageFolder(root=val_data_path, transform=transform_val) dataloader = build_data_loader( dataset, args.micro_batch_size, num_workers=args.num_workers, drop_last=(mpu.get_data_parallel_world_size() > 1), ) def metrics_func(model, epoch): print_rank_0("calculating metrics ...") correct, total = calculate_correct_answers(model, dataloader, epoch) percent = float(correct) * 100.0 / float(total) print_rank_0( " >> |epoch: {}| overall: correct / total = {} / {} = " "{:.4f} %".format(epoch, correct, total, percent) ) return metrics_func def calculate_correct_answers(model, dataloader, epoch): """Calculate correct over total answers""" model.eval() with torch.no_grad(): # For all the batches in the dataset. total = 0 correct = 0 for _, batch in enumerate(dataloader): # Run the model forward. images, labels = process_batch(batch) logits = model(images).contiguous().float() # Add output predictions. # Compute the correct answers. predicted = torch.argmax(logits, dim=-1) corrects = (predicted == labels).float() # Add to the counters. total += labels.size(0) correct += corrects.sum().item() model.train() # Reduce. unreduced = torch.cuda.LongTensor([correct, total]) torch.distributed.all_reduce(unreduced, group=mpu.get_data_parallel_group()) # Print on screen. correct_ans = unreduced[0].item() total_count = unreduced[1].item() return correct_ans, total_count