#!/bin/bash source /opt/dtk/env.sh # Runs Mixtral 8x7B model export HIP_DIRECT_DISPATCH=0 export HSA_FORCE_FINE_GRAIN_PCIE=1 export OMP_NUM_THREADS=1 export GPU_MAX_HW_QUEUES=10 export NVTE_FORCE_BLASLT=1 export NCCL_ALGO=Ring export NCCL_NCHANNELS_PER_PEER=2 export NCCL_MIN_NCHANNELS=16 export NCCL_IB_TIMEOUT=22 export CUDA_DEVICE_MAX_CONNECTIONS=1 #export NCCL_IB_HCA=mlx5_0 #export NCCL_SOCKET_IFNAME=enp145s0f0 export NCCL_NET_GDR_LEVEL=SYS export NCCL_NET_GDR_READ=0 export LD_LIBRARY_PATH=/opt/hipblaslt-install/lib/:$LD_LIBRARY_PATH RANK=$OMPI_COMM_WORLD_RANK LOCAL_RANK=$OMPI_COMM_WORLD_LOCAL_RANK WORLD_SIZE=$OMPI_COMM_WORLD_SIZE DIST_URL=${1} DIST_PORT=25900 CHECKPOINT_PATH=./CKPT TOKENIZER_MODEL=../Mixtral8x7B/mixtral_dataset/tokenizer.model DATA_PATH=../Mixtral8x7B/mixtral_dataset/my-mixtral_text_document DISTRIBUTED_ARGS=( --rank ${RANK} --world-size ${WORLD_SIZE} --local-rank ${LOCAL_RANK} --dist-url tcp://${DIST_URL}:${DIST_PORT} ) MODEL_ARGS=( --use-mcore-models --disable-bias-linear --seq-length 4096 --max-position-embeddings 32768 --num-layers 2 --hidden-size 1024 --ffn-hidden-size 14336 --num-attention-heads 32 --init-method-std 0.01 --attention-dropout 0.0 --hidden-dropout 0.0 --normalization RMSNorm --position-embedding-type rope --swiglu --untie-embeddings-and-output-weights --group-query-attention --num-query-groups 8 --no-masked-softmax-fusion --no-position-embedding --rotary-base 1000000 ) MOE_ARGS=( --num-experts 8 --moe-router-topk 2 --moe-router-load-balancing-type aux_loss --moe-aux-loss-coeff 1e-2 --moe-token-dispatcher-type alltoall --overlap-param-gather --overlap-grad-reduce --moe-expert-capacity-factor 0.5 --moe-pad-expert-input-to-capacity --moe-grouped-gemm ) DATA_ARGS=( --tokenizer-type Llama2Tokenizer --tokenizer-model ${TOKENIZER_MODEL} --data-path $DATA_PATH --split 99990,8,2 ) TRAINING_ARGS=( --micro-batch-size 1 --global-batch-size 16 --lr 1e-4 --train-iters 20 --lr-decay-iters 320000 --lr-decay-style cosine --min-lr 1.0e-5 --weight-decay 0.1 --lr-warmup-iters 500 --clip-grad 1.0 --bf16 ) MODEL_PARALLEL_ARGS=( --tensor-model-parallel-size 2 --pipeline-model-parallel-size 1 --expert-model-parallel-size 2 --expert-tensor-parallel-size 1 --use-distributed-optimizer --sequence-parallel ) LOGGING_ARGS=( --log-throughput \ --log-interval 1 \ --save-interval 10000 \ --eval-interval 1000 \ --eval-iters -1 \ #--save $CHECKPOINT_PATH \ #--load $CHECKPOINT_PATH \ --tensorboard-dir "${CHECKPOINT_PATH}/tensorboard" \ --no-load-optim \ --no-load-rng ) if [ -n "${WANDB_API_KEY}" ]; then LOGGING_ARGS+=( --wandb-project ${WANDB_PROJECT:-"Mixtral"} --wandb-exp-name ${WANDB_NAME:-"Mixtral_8x7B"} ) fi APP="python3 -u pretrain_gpt.py \ ${DISTRIBUTED_ARGS[@]} \ ${MODEL_ARGS[@]} \ ${MOE_ARGS[@]} \ ${DATA_ARGS[@]} \ ${TRAINING_ARGS[@]} \ ${MODEL_PARALLEL_ARGS[@]} \ ${LOGGING_ARGS[@]} \ " #for hygon cpu case ${LOCAL_RANK} in [0]) export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 numactl --cpunodebind=0 --membind=0 ${APP} ;; [1]) export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 numactl --cpunodebind=1 --membind=1 ${APP} ;; [2]) export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 numactl --cpunodebind=2 --membind=2 ${APP} ;; [3]) export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 numactl --cpunodebind=3 --membind=3 ${APP} ;; [4]) export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 numactl --cpunodebind=4 --membind=4 ${APP} ;; [5]) export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 numactl --cpunodebind=5 --membind=5 ${APP} ;; [6]) export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 numactl --cpunodebind=6 --membind=6 ${APP} ;; [7]) export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 numactl --cpunodebind=7 --membind=7 ${APP} ;; esac