# coding=utf-8 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch DataLoader for TFRecords""" import torch from torch.optim.lr_scheduler import _LRScheduler import math from utils import print_rank_0 class AnnealingLR(_LRScheduler): """Anneals the learning rate""" DECAY_STYLES = ['linear', 'cosine', 'constant', 'None'] def __init__(self, optimizer, start_lr, warmup_iter, num_iters, decay_style=None, last_iter=-1, min_lr=0.0, use_checkpoint_lr_scheduler=True, override_lr_scheduler=False): self.optimizer = optimizer self.start_lr = start_lr self.min_lr = min_lr self.warmup_iter = warmup_iter self.num_iters = last_iter + 1 self.end_iter = num_iters self.decay_style = decay_style.lower() if isinstance(decay_style, str) \ else None self.override_lr_scheduler = override_lr_scheduler self.use_checkpoint_lr_scheduler = use_checkpoint_lr_scheduler if self.override_lr_scheduler: assert not self.use_checkpoint_lr_scheduler, 'both override and '\ 'use-checkpoint are set.' self.step(self.num_iters) if torch.distributed.get_rank() == 0: print('learning rate decaying', decay_style) def get_lr(self): # https://openreview.net/pdf?id=BJYwwY9ll pg. 4 num_iters_ = min(self.num_iters, self.end_iter - self.warmup_iter) if self.warmup_iter > 0 and self.num_iters <= self.warmup_iter: return float(self.start_lr) * num_iters_ / self.warmup_iter else: if self.decay_style == self.DECAY_STYLES[0]: lr = self.start_lr * ((self.end_iter - (num_iters_ - self.warmup_iter)) / self.end_iter) elif self.decay_style == self.DECAY_STYLES[1]: lr = self.start_lr / 2.0 * (math.cos(math.pi * (num_iters_ - self.warmup_iter) / self.end_iter) + 1) else: lr = self.start_lr return max(lr, self.min_lr) def step(self, step_num=None): if step_num is None: step_num = self.num_iters + 1 self.num_iters = step_num new_lr = self.get_lr() for group in self.optimizer.param_groups: group['lr'] = new_lr def state_dict(self): sd = { 'start_lr': self.start_lr, 'warmup_iter': self.warmup_iter, 'num_iters': self.num_iters, 'decay_style': self.decay_style, 'end_iter': self.end_iter, 'min_lr': self.min_lr } return sd def check_and_set_(self, cls_value, sd_value, name): if self.override_lr_scheduler: print_rank_0(' > overriding {} value to {}'.format(name, cls_value)) return cls_value else: if not self.use_checkpoint_lr_scheduler: assert cls_value == sd_value, 'AnnealingLR: class input value' \ 'and checkpoint values for {} do not match'.format(name) print_rank_0(' > using checkpoint value {} for {}'.format(sd_value, name)) return sd_value def load_state_dict(self, sd): self.start_lr = self.check_and_set_(self.start_lr, sd['start_lr'], 'learning rate') self.min_lr = self.check_and_set_(self.min_lr, sd['min_lr'], 'minimum learning rate') self.warmup_iter = self.check_and_set_(self.warmup_iter, sd['warmup_iter'], 'warmup iterations') self.end_iter = self.check_and_set_(self.end_iter, sd['end_iter'], 'total number of iterations') self.decay_style = self.check_and_set_(self.decay_style, sd['decay_style'], 'decay style') self.num_iters = sd['num_iters'] self.step(self.num_iters)