# coding=utf-8 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Sample Generate GPT2""" from megatron import get_args from megatron import get_tokenizer from megatron import print_rank_0 from megatron.checkpointing import load_checkpoint from megatron.initialize import initialize_megatron from megatron.model import GPT2Model from megatron.training import get_model from megatron.text_generation_utils import generate_and_write_samples_unconditional from megatron.text_generation_utils import generate_samples_input_from_file from megatron.text_generation_utils import generate_samples_interactive def model_provider(): """Build the model.""" print_rank_0('building GPT2 model ...') model = GPT2Model(num_tokentypes=0, parallel_output=False) return model def add_text_generate_args(parser): """Text generation arguments.""" group = parser.add_argument_group(title='text generation') group.add_argument("--temperature", type=float, default=1.0, help='Sampling temperature.') group.add_argument("--greedy", action='store_true', default=False, help='Use greedy sampling.') group.add_argument("--top_p", type=float, default=0.0, help='Top p sampling.') group.add_argument("--top_k", type=int, default=0, help='Top k sampling.') group.add_argument("--out-seq-length", type=int, default=1024, help='Size of the output generated text.') group.add_argument("--sample-input-file", type=str, default=None, help='Get input from file instead of interactive mode, ' 'each line is an input.') group.add_argument("--sample-output-file", type=str, default=None, help='Output file got from --sample-input-file') group.add_argument("--num-samples", type=int, default=0, help='Number of samples to generate unconditionally, ' 'defaults to 0 and interactive conditional sampling') group.add_argument("--genfile", type=str, help='Output file when generating unconditionally') group.add_argument("--recompute", action='store_true', help='During generation recompute all attention ' 'instead of using previously computed keys/values.') return parser def main(): """Main program.""" initialize_megatron(extra_args_provider=add_text_generate_args, args_defaults={'tokenizer_type': 'GPT2BPETokenizer'}) # Set up model and load checkpoint. model = get_model(model_provider) args = get_args() if args.load is not None: _ = load_checkpoint(model, None, None) # Generate samples. if args.num_samples == 0: args.batch_size = 1 if args.sample_input_file != "": generate_samples_input_from_file(model) else: generate_samples_interactive(model) else: generate_and_write_samples_unconditional(model) if __name__ == "__main__": main()